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ABSTRACT

Latent categorical variables are frequently found in deep learning architectures.
They can model actions in discrete reinforcement-learning environments, repre-
sent categories in latent-variable models, or express relations in graph neural net-
works. Despite their widespread use, their discrete nature poses significant chal-
lenges to gradient-descent learning algorithms. While a substantial body of work
has offered improved gradient estimation techniques, we take a complementary
approach. Specifically, we: 1) revisit the ubiquitous softmax function and demon-
strate its limitations from an information-geometric perspective; 2) replace the
softmax with the catnat function, a function composed of a sequence of hierarchi-
cal binary splits; we prove that this choice offers significant advantages to gradient
descent due to the resulting diagonal Fisher Information Matrix. A rich set of ex-
periments — including graph structure learning, variational autoencoders, and re-
inforcement learning — empirically show that the proposed function improves the
learning efficiency and yields models characterized by consistently higher test per-
formance. Catnat is simple to implement and seamlessly integrates into existing
codebases. Moreover, it remains compatible with standard training stabilization
techniques and, as such, offers a better alternative to the softmax function.

1 INTRODUCTION

Categorical random variables — random variables that take one of a fixed set of values — are ubiq-
uitous in machine learning. They are used to represent a wide range of concepts, including classes
in a classification problem (LeCun & Cortes, 2010), topics in a latent variable model (Miao et al.,
2017), discrete actions in a reinforcement learning environment (Mnih et al., 2013), the presence or
absence of connections in a graph (Franceschi et al., 2019) and clusters in mixture models (Jacobs
et al., 1991).

The use of samples from categorical variables may be a modeling necessity or a choice dictated by
scalability and efficiency. For instance, some problems are inherently discrete, such as selecting a
word token in a language model (Chen et al., 2018; Paulus et al., 2020) or choosing an action in a
reinforcement learning task (Mnih et al., 2013). In other cases, discretization is used for practical
reasons, such as scalability in sparse graph modeling (Cini et al., 2023) or information compression
using vector quantization in generative models (Van Den Oord et al., 2017).

In many of these settings, the categorical variables are latent, lacking a direct supervisory signal for
training. The training signal must therefore be derived from an auxiliary loss function on a down-
stream task. While low-variance unbiased gradient estimators can be constructed for some contin-
uous latent variables using techniques like the pathwise gradient estimator (Pflug, 1996; Kingma &
Welling, 2014), the same methods are often not applicable to the discrete case. Consequently, learn-
ing often suffers from high-variance or biased gradient estimates, which can lead to unstable training
runs that fail to converge to a satisfactory solution (Peters & Schaal, 2006). As a result, improving
the training stability of models with latent categorical random variables remains an active area of
research with potential for broad impact (Mohamed et al., 2020; Huijben et al., 2022).
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Most techniques developed to stabilize the training of latent categorical distributions focus on re-
ducing the variance of the gradient estimator. This is typically achieved by introducing novel control
variates (Gu et al., 2016; Tucker et al., 2017), employing different sampling strategies (Kool et al.,
2020), or designing new gradient estimators (Niepert et al., 2021). In this work we explore a comple-
mentary perspective: improving training effectiveness by changing the function that parameterizes
the categorical distributions within an information geometry-based framework. The modification we
propose is simple to implement, can be easily integrated into existing codebases and is compatible
with other training stabilization techniques.

To the best of our knowledge, this is the first work to use results from information geometry (Rao
et al., 1945; Amari, 1998) to study the softmax parameterization and replace it with a function
that has better theoretical properties. Specifically, we observe that the standard softmax function
has a dense Fisher Information Matrix (FIM), which induces geometric distortions in the parame-
ter space. We therefore propose replacing it with a function designed to produce an optimization
landscape more amenable to gradient-descent-based algorithms. We demonstrate that this new pa-
rameterization — a series of hierarchical binary decisions that we name catnat — yields a diagonal
FIM. This diagonal structure substantially reduces geometric distortions, allowing the optimizer to
follow a more direct and stable path to a solution. Through extensive experiments in diverse settings
− Graph Structure Learning (GSL), Variational Autoencoders (VAEs), and Reinforcement Learning
(RL) − we empirically show that the proposed modification enables models to converge to solutions
with superior final performance.

2 PROBLEM FORMULATION

We consider models that employ a set of latent categorical variables to solve a downstream task. A
pipeline general enough to include many deep learning models be described as follows. (a) Given
an input x ∈ X , a neural network gθ maps x to a vector of unnormalized scores s⃗ ∈ RS . (b) These
scores are transformed by a function π : RS →∆K−1 into a valid categorical probability vector p⃗
lying in the (K − 1)-dimensional probability simplex ∆K−1 := p⃗ ∈ RK≥0 :

∑K
k=1 pk = 1. (c) A

latent categorical variable C⃗ is then sampled according to Cat(p1, . . . , pK) and (d) used, together
with x, by a task-specific predictor fψ to produce the output y:

(a) s⃗ = gθ(x),

(b) p⃗ = π(s⃗) with p⃗ = [p1, . . . , pK ],

(c) C⃗ ∼ Cat(p1, . . . , pK),

(d) y = fψ(x, C⃗), (1)

A training signal is derived from y using a task-dependent objective (e.g., a supervised loss or a
reinforcement-learning reward), and the model parameters (θ, ψ) are learned by gradient-based op-
timization of the corresponding expected objective. We present the overall architecture in Figure 1,
with results naturally extending to more sophisticated architectural variants.

Depending on the application, gθ, fψ , or both may be simple neural networks as in VAEs, or compo-
sitions of parametric and non-parametric components as in RL. While we focus on a single categori-
cal latent variable for clarity, the formulation and all subsequent results extend directly to collections
of categorical variables with potentially different cardinalities.

3 RELATED WORKS AND PRELIMINARIES

Learning Categorical Variables The most common unbiased gradient estimator is the Score
Function, or REINFORCE, gradient estimator (Williams, 1992). While unbiased, it suffers from
high variance. This variance can be reduced using control variates (Ross, 2006) by subtracting a
baseline from the learning signal. Simple baselines can be constructed by sampling the random vari-
able multiple times, at the cost of introducing non-negligible computational overhead, or they can
be estimated as a moving average from previous computations (Kool et al., 2019). More advanced
control variates can be built efficiently using a neural network (Mnih & Gregor, 2014; Grathwohl
et al., 2018), by employing a Taylor expansion of the mean-field network’s loss function (Gu et al.,
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Figure 1: Schematic depiction of a model with a single categorical latent random variable. For rigor,
we show C⃗ as a one-hot vector; however, in some cases (e.g., when using the standard version of
the Gumbel–Softmax trick) C⃗ may be a dense vector.

2016), or by using a low-variance biased estimate of the loss (Tucker et al., 2017). Other gradi-
ent estimators can notably reduce variance at the expense of a biased gradient estimate by using a
continuous relaxation of one-hot vectors, as in the Gumbel-Softmax (Jang et al., 2017; Maddison
et al., 2017; Huijben et al., 2022), or by directly using mean-field gradients as a surrogate (Bengio
et al., 2013). In the same class of biased estimators are MAP-based estimators (Niepert et al., 2021;
Minervini et al., 2023) that derive a gradient signal from the change in the MAP estimate in response
to perturbations of the distribution’s parameters.

Instead of changing the gradient estimator another interesting line of research focuses on sampling
techniques to reduce the variance of the estimator (Titsias & Lázaro-Gredilla, 2015). For example,
Liu et al. (2019) propose to exactly compute the contribution of high probability components and
to estimate the rest with an unbiased estimator while Kool et al. (2020) propose to sample without
replacement and then unbias the estimate to avoid duplicate samples. Often these techniques can be
shown to be a Rao-Blackwellization (Mood et al., 1974) of other more simple estimators.

Information Geometry & Natural Gradient Ordinary gradient descent assumes an Euclidean
geometry of the parameter space. In Amari (1998) and Amari & Douglas (1998) the authors rec-
ognized that the parameter space of many learning models is not Euclidean and equal changes1 in
the parameter space can have disproportional impacts on the model’s output distribution. To address
this, they proposed measuring the ’distance’ between parameter settings through the dissimilarity of
their induced distributions, assessed by their Kullback–Leibler divergence. For distributions p(x|θ)
and p(x|θ + dθ) close in the parameter space, the KL divergence can be approximated as:

DKL(p(x|θ)||p(x|θ + dθ) ≃ 1

2
dθTG(θ)dθ (2)

Where G(θ) is the Fisher Information Matrix (FIM):

G(θ) = Ep(x|θ)
[
(∇θlog p(x|θ)) (∇θlog p(x|θ))T

]
(3)

The FIM captures the local curvature of the statistical manifold (Amari, 2016) and the natural gradi-
ent is defined as the direction of steepest descent in this Riemannian manifold. The natural gradient
∇̃L(θ) can be obtained by pre-conditioning the ordinary gradient with the inverse of the FIM:

∇̃L(θ) = G(θ)−1∇L(θ) (4)
While theoretically advantageous, implementing natural gradient descent presents practical chal-
lenges. First, for each update step, computing Equation (4) requires calculating and inverting the
FIM, which entails cubic scaling and can easily become a computational bottleneck. For this reason,
different approximations have been proposed (Pascanu & Bengio, 2013; Grosse & Martens, 2016;
Amari et al., 2019) to speed up computation at the expense of precision. As a second problem,
Equations (2) and (4) hold true for infinitesimal parameter changes, so their approximation error
increases with larger, more practical step sizes commonly used during optimization. In Martens
(2020) natural gradient descent is analyzed from the perspective of a second-order optimization
method, demonstrating that designing a robust natural gradient optimizer necessitates the incorpo-
ration of techniques such as trust regions and Tikhonov regularization. Furthermore, the FIM can
be singular or create numerical instabilities during its inversion. In this work, we propose to tackle
both problems by choosing a suitable parameterization for the categorical latent random variable
that intrinsically produces a diagonal FIM.

1measured by some kind of Euclidean norm.
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4 CATEGORICAL RANDOM VARIABLES PARAMETERIZATIONS

4.1 THE SOFTMAX FUNCTION AND ITS PITFALLS

Let s⃗ ∈ R1×K be a set of scores, the softmax function is defined as:

pi =
esi∑K
k=1 e

sk
(5)

Originally introduced in statistical mechanics as the Boltzmann distribution (Jaynes, 1957), the soft-
max later appeared in statistics as the canonical link for categorical outcomes in Generalized Linear
Models (GLM) (Nelder & Wedderburn, 1972). In neural networks, the name softmax was popular-
ized by Bridle (1989), who also describes some of its appealing properties: it converts arbitrary real
vectors into non-negative probabilities, preserves rank order, and offers a smooth approximation to
the argmax. These features have made it the standard parameterization for categorical variables in
machine learning.

Despite its benefits, the softmax function has non-negligible drawbacks. It is overparameterized,
using K parameters to represent a (K − 1)-dimensional simplex, it can saturate, leading to van-
ishing gradients (Goodfellow et al., 2016) and, in highly nonlinear probabilistic models, the GLM
assumptions behind its usefulness (Nelder & Wedderburn, 1972) may not hold.

We argue that Information Geometry (Amari, 1998; 2016) provides a principled framework for
defining more suitable parameterizations. To this end, in Proposition 4.1 we analyze the geometric
properties induced by the softmax function.
Proposition 4.1. The Fisher Information Matrix for a categorical random variable parametrized by
the softmax function, as defined in (5), is

Gsoftmax(s) =


p1(1− p1) −p1p2 · · · −p1pK
−p2p1 p2(1− p2) · · · −p2pK

...
...

. . .
...

−pKp1 −pKp2 · · · pK(1− pK)

 . (6)

We provide a proof of the proposition in Appendix A.

The resulting Fisher Information Matrix is dense, with off-diagonal entries −pipj that couple all
scores. Consequently, the statistical manifold is curved, and, as discussed in Section 3 and by
Amari & Douglas (1998); Amari (2016), gradient-based optimization can suffer. To address this,
we introduce a class of parameterizations designed to induce a flatter statistical manifold.

4.2 CATNAT: A CLASS OF NATURAL PARAMETERIZATIONS

Figure 2: catnat param-
eterization for a cate-
gorical distribution with
K = 4 classes.

In this section, we propose a class of parameterizations for categorical
random variables that, as demonstrated in Theorem 4.2, yield a diag-
onal Fisher Information Matrix. We refer to this class as catnat, as it
parametrizes the categorical distribution in accordance with natural gra-
dient principles. By analyzing the general form of the FIM, we further
identify and select the parameterization with the minimal number of fac-
tors in the diagonal terms.

The proposed class models the categorical probability distribution as the
outcome of a sequence of binary decisions, structured as a hierarchical
tree. Each unnormalized score si corresponds to a unique node in this
tree. To ensure that the resulting probabilities lie in the interval [0, 1],
an activation function a : R → [0, 1] is applied to each score. Figure 3
illustrates this construction.

Each score si, its corresponding binary probability ai := a(si), and the
final categorical probabilities pk are associated with unique indices. To
ease the theoretical analysis, we express those indices in their binary representation that, for a cate-
gorical distribution over K classes, can be represented by a string of length H = log2(K) bits. See
Figure 2 for an example with K = 4.
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Figure 3: catnat parameterization for the categorical distribution. Given unnormalized scores si
and activation function a, blue nodes compute the probability of going left (a(si)) or right (1 −
a(si)). Final categorical probabilities are shown in purple. On the right side, the hierarchy level h is
indicated. Note that indices for p start from zero, while indices for s start from one.

For Bernoulli probabilities ai and scores si, we introduce a convenient notation by splitting the
binary string into two sequences: HRC and ID . Given the hierarchy level h of ai in the tree, HRC

consists of h − 1 zeros followed by a one, while ID specifies the position of the node at that level.
For example, in Figure 4, HRC shows that a9 is at hierarchy level h = 3, and ID = 010 identifies it
as the second node from the right.

 
HRC ID

HRC ID

bits

Figure 4: Example of a
binary representation of
a node for K = 64.

Since HRC is uniquely determined once ID and K are given, we drop
HRC and write, for a node at hierarchy h:

a HRC ID = a ID = a
b1, ..., bh−1

. (7)

The introduced notation allows for a compact representation of the cate-
gorical probabilities. Specifically, the probability pk of category k identi-
fied by the binary string b⃗ = [b1, ..., bH ] is:

p⃗b = pb1,...,bH =

H∏
h=1

(
a

b1, ...,bh−1

)bh (
1− a

b1, ...,bh−1

)1−bh
(8)

At the root node (h = 1), the path represented by the set b1, . . . , bh−1 is empty, consistent with the
fact that the node is uniquely identified by its hierarchy level alone. By construction, the probability
of descending from the root to a node ai is:

P (ai) = P
(
a ID i

)
= P

(
a

b1, ..., bhi−1

)
=

hi−1∏
h=1

(
a

b1, ...,bh−1

)bh (
1− a

b1, ...,bh−1

)1−bh
(9)

This probability is also equivalent to the sum of the probabilities of all leaf nodes p⃗b that descend
from the node ai:

P (ai) =
∑
b⃗∈Di

p⃗b (10)

where Di is the set of all leaf nodes in the subtree rooted at ai.
Theorem 4.2. The Fisher Information Matrix Ga(s) for the catnat parameterization is:

Ga(s)ij =

{
0 if i ̸= j

P (ai)
(
∂ai
∂si

)2 (
1

ai(1−ai)

)
if i = j

(11)
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The proof is provided in Appendix B. Theorem 4.2 shows that this class of parameterizations yields
diagonal FIMs, thereby flattening the statistical manifold. The diagonal entries, Ga(s)ii, depend on
two components: the probability of reaching node i, P (ai), and a term involving the derivative of
the chosen activation function. Since P (ai) is determined by the scores of all ancestor nodes, each
diagonal entry depends on at most H = log2(K) scores. Furthermore, as the overall complexity of
the FIM is governed by the choice of a(s), we can further simplify Equation (11). We propose the
natural activation function ν(x) to render the second component constant:

ν(x) =


0 if x ≤ C − A

2
1+sin(π(x−C)

A )
2 if C − A

2 ≤ x ≤ C + A
2

1 if x ≥ C + A
2

(12)

C is a parameter that can be used to shift the function along the x axis and to modify the categorical
probabilities at initializations − when it is reasonable to expect the scores to be distributed around
zero. In the experiment we use C = 0. Parameter A can be changed to modify the slope of the
function around C. In the experiments, to have a fair comparison between the natural activation ν
with the sigmoid function σ we set A so that ∂ν

∂s

∣∣
s=0

= ∂σ
∂s

∣∣
s=0

resulting in A = 2π.

We term ν the natural activation function as it simplifies the FIM in a way that aligns with the
objectives of natural gradient methods, as demonstrated in Corollary 4.3.
Corollary 4.3. The Fisher Information Matrix Ga(s) for the catnat parameterization using the
natural activation function ν is:

Gν(s)ij =

{
0 if i ̸= j

P (ai)
(
π
A

)2
if i = j and |si − Ci| < A

2

(13)

with the value for i = j at |si − Ci| = A
2 defined by continuity.

The corollary is proved in Appendix C. The corollary shows that using the natural activation elimi-
nates the dependence of each diagonal entryGν(s)ii on the local score si, leaving only the ancestor-
dependent probability term P (ai).

5 EXPERIMENTS

We evaluate three parameterizations for categorical latent random variables: the softmax function,
the catnat parameterization with sigmoid activation, and the catnat parameterization with natu-
ral activation function. The evaluation spans three distinct domains that rely on such variables:
Graph Structure Learning (GSL), Variational Autoencoders (VAE), and Reinforcement Learning
(RL). These domains allow to assess the proposed method under diverse conditions, varying fac-
tors such as the gradient estimator employed for the latent distribution parameters, the number of
categories (K), the number of latent variables (N ), the form of the loss or reward function and
the downstream task considered. Empirical results show that both hierarchical parameterizations
typically converge to better optima, with the proposed natural activation function yielding superior
performance in the majority of the cases.

5.1 GRAPH STRUCTURE LEARNING

Table 1: Different datasets are gener-
ated with different latent distributions.
The latent distribution is determined by
the Bernoulli probability θ∗ of sampling
edges from communities as in Figure 5.

True Bernoulli Binary entropy per
probability θ∗ edge (shannons)

0.1 0.47
0.25 0.81
0.5 1

0.75 0.81
0.9 0.47

Graph Neural Networks (GNNs) (Scarselli et al., 2008)
are a class of models that leverage relational informa-
tion, encoded in an adjacency matrix A, as an inductive
bias to improve performance on various predictive tasks
(Fout et al., 2017; Shlomi et al., 2020). Often, the optimal
graph structure is not available and must be inferred from
the data, a process known as Graph Structure Learning
(GSL) (Kipf et al., 2018; Franceschi et al., 2019; Fatemi
et al., 2021). In this context, the adjacency matrix A is
frequently treated as a collection of latent categorical ran-
dom variables C⃗, where a Bernoulli random variable typi-
cally models the existence of each edge (Franceschi et al.,
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Table 2: Test metrics of models trained on datasets generated with different true latent parameters θ∗.
ES, PP-MAE, and PP-MSE measure predictive performance, while MAE in θ evaluates calibration
on the latent distribution parameters. For all metrics, lower values indicate better performance.
Bold numbers indicate the best-performing models. Optimal values are estimated using the true
data-generating model.

θ∗ Activation ES loss PP-MAE PP-MSE MAE on θ

sigmoid 7.445 ± 0.008 0.3843 ± 0.0006 0.621 ± 0.001 0.0077 ± 0.0002
0.1 natural 7.429± 0.011 0.3842± 0.0006 0.618± 0.002 0.0054± 0.0002

Optimal value 7.417± 0.008 0.3844 ± 0.0007 0.615 ± 0.001 0

sigmoid 10.892 ± 0.012 0.8228 ± 0.0009 1.312 ± 0.003 0.0080 ± 0.0001
0.25 natural 10.872± 0.017 0.8213± 0.0012 1.307± 0.004 0.0060± 0.0004

Optimal value 10.848 ± 0.009 0.8199 ± 0.0007 1.300 ± 0.002 0

sigmoid 14.955 ± 0.007 1.2536 ± 0.0006 2.469 ± 0.002 0.0191 ± 0.0005
0.5 natural 14.942± 0.028 1.2534± 0.0024 2.468± 0.009 0.0064± 0.0005

Optimal value 14.923 ± 0.015 1.2522 ± 0.0015 2.461 ± 0.005 0

sigmoid 10.716 ± 0.043 0.8017 ± 0.0032 1.273 ± 0.010 0.0181 ± 0.0007
0.75 natural 10.672± 0.012 0.7983± 0.0011 1.267± 0.003 0.0045± 0.0002

Optimal value 10.671 ± 0.014 0.7942 ± 0.0010 1.267 ± 0.003 0

sigmoid 7.377 ± 0.018 0.4265 ± 0.0015 0.614 ± 0.003 0.0145 ± 0.0003
0.9 natural 7.353± 0.013 0.4026± 0.0014 0.611± 0.002 0.0036± 0.0003

Optimal value 7.341 ± 0.011 0.3840 ± 0.0008 0.611 ± 0.002 0

2019; Elinas et al., 2020; Zambon et al., 2023; Cini et al., 2023; Manenti et al., 2025). We adopt
the experimental setup from Manenti et al. (2025), generating synthetic data with a Graph Neural
Network (GNN), fψ∗(x,A). This GNN computes an output y∗ from random input features x and a
latent graph A, which we sample from a multivariate Bernoulli distribution, Pθ∗(A). The ground-
truth parameters θ∗ij are set to the same non-zero value θ∗ for edges forming the community structure
depicted in Figure 5 and are zero otherwise. We use this dataset to train a model with an identical
architecture to recover the underlying graph structure and GNN parameters. We optimize the model
using the Energy Score (ES) (Gneiting & Raftery, 2007) loss for its calibration advantages (Manenti
et al., 2025). We use the score function gradient estimator (Williams, 1992) with the LOO baseline
to train the latent parameters. We provide additional details in Appendix D. As each categorical
random variable is bivariate, the resulting hierarchical parameterization has a depth of one. We
therefore compare the natural activation function proposed herein with the standard sigmoid.

To compare the score parameterizations under different entropy settings we generate five datasets
with different true latent parameters θ∗. Experiment configurations are detailed in Table 1. The task
in this setting is twofold: (i) to make optimal point predictions, measured for example by the Point
Prediction Mean Absolute Error (PP-MAE) and Mean Squared Error (PP-MSE), and (ii) to learn the
correct graph structure, i.e., to accurately estimate the true parameters θ∗. The latter is evaluated,
for example, by the mean absolute error on the distribution parameters (MAE on θ), ⟨|θij − θ∗ij |⟩.
The experimental results in Table 2 show that the natural activation ν consistently outperforms the
standard sigmoid σ across all metrics and data-generating conditions, with the largest gains in learn-
ing the underlying latent distribution. In particular, the natural parameterization recovers the true
data-generating parameters more accurately, as measured by the MAE on θ. This improvement is es-
pecially pronounced in the highest-entropy setting (θ∗ = 0.5), where the error is reduced by nearly a
factor of three. In terms of predictive performance, the natural parameterization also achieves lower
mean scores on the ES loss and both point prediction errors.

5.2 CATEGORICAL VAE

Variational autoencoders (VAEs) (Kingma & Welling, 2014) constitute a class of deep generative
models that learn compact latent representations of data via a probabilistic framework. The original
VAE framework employs a continuous latent distribution—typically Gaussian—which may not suit
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Table 3: Test set negative log likelihood on the MNIST dataset. Negative log-likelihoods are es-
timated with 512 importance samples (Burda et al., 2016) (lower is better). Models are compared
across the number of categorical variablesN , categoriesK, and categorical parameterizations. Bold
denotes the best-performing model for each (N,K) setting, and underline the second best.

N Param. MNIST Binary MNIST

K = 8 K = 16 K = 32 K = 8 K = 16 K = 32

10
softmax 100.9± 0.5 98.1± 0.7 98.6± 0.7 84.9± 0.8 81.0± 1.2 79.9± 0.5
catnat σ 99.5± 0.2 97.7± 0.4 96.6± 0.2 83.0± 0.6 78.8± 0.6 76.9± 0.7
catnat ν 99.8± 0.4 97.6± 0.2 96.9± 0.4 83.2± 0.5 78.7± 0.3 77.3± 0.4

20
softmax 97.8± 0.2 97.5± 0.5 98.2± 0.8 78.3± 0.5 78.1± 0.4 79.2± 1.0
catnat σ 97.5± 0.3 96.9± 0.4 97.0± 0.3 77.5± 1.1 76.7± 0.7 76.2± 0.5
catnat ν 97.7± 0.2 97.0± 0.4 96.9± 0.4 77.1± 0.4 76.6± 0.3 76.8± 0.4

30
softmax 98.8± 0.7 98.8± 0.9 99.3± 0.7 79.0± 0.5 79.2± 0.9 80.6± 0.6
catnat σ 98.1± 0.4 97.6± 0.4 97.9± 0.5 77.9± 0.7 77.8± 0.6 77.9± 1.1
catnat ν 97.9± 0.3 97.6± 0.3 97.7± 0.8 77.9± 0.6 77.7± 0.5 78.0± 0.7

data with inherently discrete factors (Van Den Oord et al., 2017). To address this limitation, VAEs
have been extended to incorporate categorical variables C⃗, enabling more accurate modeling of
such structures (Jang et al., 2017; Maddison et al., 2017). In this configuration, the latent space is
parameterized by one or more categorical random variables.

We trained a variational autoencoder (VAE) with a discrete, categorical latent space2 on the MNIST
dataset (LeCun & Cortes, 2010) and on a binarized version of the same dataset, where pixels are
thresholded at 0.5 of their maximum intensity value (Akrami et al., 2022). Its encoder, a Convo-
lutional Neural Network, processes an input image x to produce a tensor of unnormalized scores,
s⃗ ∈ RN×K , which parameterize the approximate posterior distribution q(C⃗|x). The latent space
is structured as a composite of N independent categorical variables, where each variable can as-
sume one of K distinct classes. To enable gradient flow through the discrete sampling process, we
employ the Gumbel-Softmax trick (Jang et al., 2017), which generates differentiable sample tensors
C⃗ ∈ [0, 1]N×K . Note that the samples used by the Gumbel-Softmax trick are continuous relaxations
of one-hot vectors. The latent samples C⃗ are then fed into the decoder, a corresponding transposed
convolutional network (Zeiler et al., 2010), to generate a reconstructed image ŷ.

To form the categorical distributions from the encoder’s scores, we test three parameterization
schemes: the softmax function, the catnat function with sigmoid activation function and the catnat
function with natural activation. The model’s training objective is the minimization of the Evi-
dence Lower Bound (ELBO) (Kingma & Welling, 2014). We defer additional experimental details
to Appendix E.

The results in Table 3 show a clear performance advantage for both catnat parameterizations over the
softmax across all experiments. This indicates that the benefits of the proposed parameterization are
relevant in the probabilistic generative modeling case. Importantly, these improvements are observed
across a wide range of latent configurations (N ∈ {10, 20, 30},K ∈ {8, 16, 32}), underscoring the
robustness of the approach to changes in model capacity and latent space complexity. Within the
hierarchical methods, the natural activation function ν yields a slight improvement over the sigmoid
function σ in the majority of the settings, although the two are statistically equivalent on average.

Overall, these results demonstrate that in practical real-world scenarios, simply replacing the stan-
dard softmax with the proposed catnat parameterization facilitates training and consistently im-
proves downstream performance.

5.3 REINFORCEMENT LEARNING

Reinforcement learning (RL) is a framework where an agent learns to make sequential decisions
by interacting with an environment in order to maximize a cumulative reward signal (Sutton et al.,

2Our implementation is based on the code available at https://github.com/jxmorris12/categorical-vae.
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1998). In policy-based approaches (Sutton et al., 1998), the agent’s strategy is directly parameterized
by a policy π, which maps observed states to actions. In many domains, such as board games or
classic Atari video games (Bellemare et al., 2013; Mnih et al., 2013; 2015), the action space is
discrete, requiring the agent to select from a finite set of choices at each step. In such settings, the
policy produces a categorical distribution over the available actions.

In this setting, we employ the Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017)
on the discrete-action Atari environments Breakout and Seaquest (Mnih et al., 2013; 2015). We
adopt the PPO implementation from Huang et al. (2022) in which an agent uses a shared-parameter
actor-critic architecture, with a deep convolutional network processing stacked game frames to pro-
duce a latent state representation. This state is then fed into two separate heads: a value head that
estimates the state-value function, and a policy head that outputs scores for the action distribution.
Additional experimental details are provided in Appendix F

Due to the computational burden of these experiments, an exhaustive hyperparameter search was
not feasible. Instead, for each method and environment, we selected promising configurations by
sampling 160 trials with a Tree-structured Parzen Estimator (TPE) Bayesian sampler (Bergstra
et al., 2011). The top 10 resulting configurations were then re-evaluated across 10 independent
random seeds to gather performance statistics. Within this framework, we tested two methods to
convert the policy head’s scores into action probabilities: the standard softmax function and the
catnat using the natural activation function.

Table 4: Final episodic returns on Seaquest and
Breakout environments. The higher the better.

Parameterization RL Environment

Breakout Seaquest

softmax 398± 25 1875± 312
catnat ν 406± 34 2164± 533

Table 4 reports the final episodic returns on
Seaquest and Breakout environments. The cat-
nat parameterization yields better performance
w.r.t. the standard softmax function, with a mod-
est improvement in Breakout and a more substan-
tial gain in the more complex Seaquest environ-
ment. These results indicate that the information-
geometric properties of catnat translate into prac-
tical benefits even in high-dimensional, sequen-
tial decision-making tasks. A notable characteristic of these experiments is the high variance, re-
flected in the large standard deviations relative to the mean returns. This variance is typical in deep
RL due to sensitivity to initialization, stochasticity in exploration, and non-stationarity of training
dynamics. The fact that catnat maintains a consistent performance advantage despite this variance
suggests that its benefits are robust rather than artifacts of specific hyperparameter settings. In partic-
ular, the larger relative gains in Seaquest, where the action space is richer and exploration dynamics
more complex, point to potential advantages in environments with increased complexity. A more
exhaustive search could provide a clearer picture of the potential performance ceiling of catnat, with
future work investigating how the relative benefits of this parameterization scale with task difficulty,
action space size, or agent capacity.

6 CONCLUSIONS

We introduced a new perspective for improving training of models with latent categorical random
variables. Specifically, we showed that replacing the standard softmax parameterization with a cat-
nat function − a hierarchical sequence of binary decisions − yields favorable information-geometric
properties. Empirical results across diverse settings indicate that these properties facilitate gradient-
based optimization and provide better parameter configurations leading to improved final perfor-
mance. Two main directions for future work remain. First, although our study focused on categorical
distributions, the findings suggest that parameterizations that induce a diagonal Fisher Information
Matrix consistently improve performance. Extending this approach to other families of continu-
ous and discrete distributions is a promising avenue for future research. Second, our experiments
were not designed to engineer models for state-of-the-art performance, but rather to demonstrate the
broad applicability and effectiveness of the proposed approach. Nonetheless, application-specific
state-of-the-art methods that rely on categorical random variables are likely to benefit from the cat-
nat parameterization, and could thereby achieve new state-of-the-art results with minimal effort.
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REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. The proposed catnat
parameterization is simple to implement, and its full construction is provided in Section 4.2. All
theoretical results are formally stated in the main text and rigorously proved in the appendices (see
Appendix A, B, and C). The experimental settings rely on publicly available codebases: Graph
Structure Learning builds on Manenti et al. (2025), the categorical VAE implementation follows
this open-source repository, and the reinforcement learning experiments use the high-quality PPO
implementation from Huang et al. (2022). For each experiment, the datasets used in our experiments
are all standard and publicly available: the GSL dataset is generated following the procedure in
Manenti et al. (2025), the VAE experiments use the MNIST and binarized MNIST datasets (LeCun
& Cortes, 2010; Akrami et al., 2022), and the RL tasks are based on Atari environments provided
by the Gymnasium library (Bellemare et al., 2013; Towers et al., 2024). Furthermore, we provide
detailed descriptions of the model architectures, hyperparameter searches, optimization strategies,
and evaluation metrics in Appendix D, Appendix E, and Appendix F, respectively. Together, these
elements provide sufficient information to fully reproduce our theoretical and empirical results.

REFERENCES

Haleh Akrami, Anand A Joshi, Jian Li, Sergül Aydöre, and Richard M Leahy. A robust variational
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APPENDIX

A PROOF OF PROPOSITION 4.1

Here we prove that the Fisher Information Matrix for a categorical distribution parametrized by a
softmax

(
i.e., pi = esi∑K

k=1 e
sk

)
is:

Gsoftmax(s) =


p1(1− p1) −p1p2 · · · −p1pK
−p2p1 p2(1− p2) · · · −p2pK

...
...

. . .
...

−pKp1 −pKp2 · · · pK(1− pK)


Proof. For a single observation take C = (C1, . . . , CK) be a one-hot encoded vector with Ck̄ = 1
if the observed category is k̄ and zero elsewhere. The log-likelihood is:

log(p(C|s)) =
K∑
k=1

Cklog(pk) =

K∑
k=1

Ck

(
sk − log

(
K∑
k′=1

esk′

))
(14)

We have:
∂log(p(Ck = 1|s))

∂si
= δki − pi (15)

With δki being the Kronecker delta.

The Fisher Information Matrix is:

Gsoftmax(s)ij = EC∼p(C|s)

[
∂log(p(C|s))

∂si

∂log(p(C|s))
∂sj

]
(16)

=

K∑
k=1

pk(δki − pi)(δkj − pj) (17)

• For diagonal elements:

Gsoftmax(s)ii =

K∑
k=1

pk(δki − pi)
2 = pi(1− pi) (18)

• For off-diagonal elements:

Gsoftmax(s)ij =

K∑
k=1

pk(δki − pi)(δkj − pj) (19)

=

K∑
k=1

pk(δkiδkj − δkipj − δkjpi + pipj) (20)

= −pipj (21)

yielding the Fisher Information Matrix Gsoftmax(s) stated in the proposition.

B PROOF OF THEOREM 4.2

To prove Theorem 4.2, we use the following series of lemmas and propositions.

Lemma B.1. Given a set of bits [b1, ..., bH ] then a ID is an ancestor of pb1,...,bH if and only if ID

= b1, ..., bh−1
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Proof. By construction the binary number [b1, ..., bH ] in pb1,...,bH represents the binary decisions
taken at each hierarchy level h. In particular, the first h − 1 terms [b1, ..., bh−1] represent, in order,
the first h− 1 binary decisions.

For each hierarchy level h, each node a ID is identified by ID . The numerical value represents its
position reading right to left by construction (i.e., bh = 1 corresponds to descending left). The first
bit in ID splits the 2h−1 numbers in half (i.e., for the left half the first bit is one, for the right half
is zero). The subsequent bits recursively split the selected group in half following the same logic.
Thus, each bit in ID can be viewed as a binary decision of moving left or right. Thus, a

b1, ..., bh−1
is

the node reached from the root following binary decisions b1, ..., bh−1. Since each p hasH ancestors
and the root is common the lemma is proved.

Lemma B.2. Given aα and pγ ,

if pγ is not a descendant of aα =⇒ ∂

∂aα
log(pγ) = 0. (22)

Proof. Consider the binary representation of aα. From Lemma B.1 a ID is not an ancestor of

pb1,...,bH then ID ̸= b1, ..., bh−1 . In that case a ID is not a term in (8) and thus ∂
∂aα

log(pγ) =
1
pγ

∂
∂aα

pγ = 0.

Corollary B.3. Given aα, aβ and pγ with α ̸= β,

If aα is neither a descendant nor an ancestor of aβ =⇒ ∂
∂aα

log(pγ)
∂
∂aβ

log(pγ) = 0.

Proof. If aα is neither a descendant nor an ancestor of aβ then they do not share any descendant and
thus for Lemma B.2 the Corollary is trivially proved.

Proposition B.4. The Fisher Information MatrixGa(s) for the catnat parameterization is diagonal.

Proof. To prove the Proposition we prove that all the off-diagonal terms of Ga(s) are zero. By
definition:

Ga(s)αβ = EC∼p(C|s)

[
∂

∂sα
log(p(C|s)) ∂

∂sβ
log(p(C|s))

]
= EC∼p(C|s)

[
∂aα
∂sα

∂

∂aα
log(p(C|s))∂aβ

∂sβ

∂

∂aβ
log(p(C|s))

]
=

∑
b⃗∈{0,1}H

p⃗b

[
∂aα
∂sα

∂

∂aα
log(p⃗b)

∂aβ
∂sβ

∂

∂aβ
log(p⃗b)

]
(23)

From Corollary B.3 if aα is neither a descendant nor an ancestor of aβ the term in the square
brackets is zero. We thus consider aα being an ancestor of aβ , since the FIM is symmetric this is
not restrictive. From Lemma B.2 the only terms that may produce nonzero addends are from the b⃗
that are descendant Dβ of aβ . Thus:

Ga(s)αβ =
∑
b⃗∈Dβ

p⃗b

[
∂aα
∂sα

∂

∂aα
log(p⃗b)

∂aβ
∂sβ

∂

∂aβ
log(p⃗b)

]
(24)

We call hα and hβ the hierarchies of aα and aβ and consider their binary representation a ID α
and

a ID β
. From Equation 8 we write the log-likelihood derivative as:

∂

∂a ID

log (pb1,...,bH ) = 1
[
[b1, ..., bh−1] = ID

] 2bh − 1

abh
ID
(1− a ID )(1−bh)

(25)
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where 1[·] is the indicator function, which evaluates to 1 if the given condition is true and 0 if it is
false. The b⃗ ∈ Dβ share the same first hβ − 1 bits. Since aα is an ancestor of aβ then hβ > hα and
thus bhα

is the same for all b⃗ ∈ Dβ . Then:

Ga(s)αβ = K
∑
b⃗∈Dβ

p⃗b

[
∂

∂aβ
log(p⃗b)

]

= K
∑
b⃗∈Dβ

bhβ
=1

p⃗b

[
∂

∂aβ
log(p⃗b)

]
︸ ︷︷ ︸

a
ID

β

−1

+K
∑
b⃗∈Dβ

bhβ
=0

p⃗b

[
∂

∂aβ
log(p⃗b)

]
︸ ︷︷ ︸
−(1−a

ID
β

)−1

= K
∑
b⃗∈Dβ

bhβ
=1

p⃗b
a ID β

−K
∑
b⃗∈Dβ

bhβ
=0

p⃗b
1− a ID β

=
K

a ID β

∑
b⃗∈Dβ

bhβ
=1

p⃗b −
K

1− a ID β

∑
b⃗∈Dβ

bhβ
=0

p⃗b (26)

By construction:

∑
b⃗∈Dβ

bhβ
=1

p⃗b = P
(

descend to node a ID β

)
· a ID β

∑
b⃗∈Dβ

bhβ
=0

p⃗b = P
(

descend to node a ID β

)
· (1− a ID β

)

Thus, Ga(s)αβ = 0 for off-diagonal terms.

Proposition B.5. The diagonal terms of the Fisher Information Matrix Ga(s) for the catnat param-
eterization are:

Ga(s)ii = P (ai)

(
∂ai
∂si

)2(
1

ai(1− ai)

)
(27)
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Proof. Reusing arguments from the previous proofs we can write:

Ga(s)ii = EC∼p(C|s)

[(
∂

∂si
log(p(C|s))

)2
]

=
∑
b⃗∈Di

p⃗b

(
∂

∂si
log(p⃗b)

)2

=
∑
b⃗∈Di

p⃗b

(
∂ai
∂si

∂

∂ai
log(p⃗b)

)2

=

(
∂ai
∂si

)2 ∑
b⃗∈Di

p⃗b

(
∂

∂ai
log(p⃗b)

)2

=

(
∂ai
∂si

)2

 ∑
b⃗∈Di

bhi
=1

p⃗b

(
1

a ID i

)2

+
∑
b⃗∈Di

bhi
=0

p⃗b

(
−1

1− a ID i

)2


=

(
∂ai
∂si

)2
[
P (ai)

(
1

ai

) ̸2

��ai + P (ai)

(
1

1− ai

)̸2

����(1− ai)

]

= P (ai)

(
∂ai
∂si

)2(
1

ai(1− ai)

)

Theorem 4.2 follows naturally from Proposition B.4 and Proposition B.5.

C PROOF OF COROLLARY 4.3

Proof. To prove the corollary we start from Theorem 4.2 and substitute the definition in (12).

For the natural activation function ν:

(
∂νi
∂si

)2(
1

νi(1− νi)

)
=

 ∂

∂si

1 + sin
(
π(si−C)

A

)
2

2

 1(
1+sin

(
π(si−C)

A

)
2

)(
1−

1+sin
(

π(si−C)

A

)
2

)


=

(
π

2A
cos

(
π(si − C)

A

))2
 4(

1 + sin
(
π(si−C)

A

))(
1− sin

(
π(si−C)

A

))


=

(
π

2A
cos

(
π(si − C)

A

))2
 4(

1− sin2
(
π(si−C)

A

))


=

(
π

2A
cos

(
π(si − C)

A

))2
 4

cos2
(
π(si−C)

A

)


=
π2

A2

Thus,

Gν(s)ii = P (ai)
π2

A2
(28)
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D EXPERIMENTAL DETAILS: GRAPH STRUCTURE LEARNING

This appendix summarizes the experimental setup for the Graph Structure Learning experiment,
adapted from Manenti et al. (2025).

D.1 DATA-GENERATING PROCESS

The dataset is generated from a system model comprising two components: a latent graph distribu-
tion P θ

∗

A that produces a random adjacency matrix A, and a Graph Neural Network fψ∗ that maps
an input feature matrix x and the graph A to an output y.

LATENT GRAPH DISTRIBUTION

The latent graph structure A is sampled from a multivariate Bernoulli distribution parameterized by
a matrix of probabilities θ∗ij :

Pθ∗(A) =
∏
i,j

(θ∗ij)
Aij (1− θ∗ij)

1−Aij (29)

Each entry Aij represents a potential edge, sampled independently with a success probability of
θ∗ij . The ground-truth parameters θ∗ij are set to the same non-zero value θ∗ for edges forming the
community structure depicted in Figure 5 and are zero otherwise. For the experiments we use a
graph with 4 communities.

Figure 5: The base graph structure used to generate adjacency matrices for the experiments in Sec-
tion 5.1. The matrices are sampled as subgraphs from this structure, where each orange edge is
included with an independent probability of θ∗ij , according to the distribution Pθ∗(A) in (29). Image
taken from Manenti et al. (2025)

GNN ARCHITECTURE

The GNN function fψ∗ used to processes the sampled graph A and a random input feature matrix
x ∈ RN×din is a GCN (Kipf & Welling, 2017). The input features are sampled from a normal
distribution, x ∼ N (0, σ2

xI) with σx = 1.

This generation process yielded a dataset of 10,000 input-output (x, y) pairs, partitioned into a
training set (80%), a validation set (10%), and a test set (10%). The learnable model we train has an
identical architecture to the one described above.

D.2 LEARNABLE MODEL

For the learnable deep learning architecture, we employ the same class of latent graph distribution
and GNN architecture as in the data-generating model. We jointly learn the parameters of the latent
graph distribution, denoted by θ, and the parameters of the GNN, denoted by ψ.

We perform a two-stage grid search over learning rates. In all experiments, the learning rate for
the GNN parameters ψ and the latent graph parameters θ is chosen from the same grid. The search
procedure is:

1. Coarse grid: Test rates in {0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5}.

18



Currently under review.

2. Refined grid: Centered around the best-performing coarse rate (selected by validation loss).
The refined grids used in our experiments were:

• Sigmoid parameterization: {0.025, 0.03, 0.037, 0.045, 0.055, 0.067, 0.082}.
• Natural parameterization: {0.012, 0.015, 0.018, 0.022, 0.027, 0.033, 0.041}.

The final learning rate for each run is the one that yields the lowest validation loss. Using this best
learning rate, we train 10 models to compute aggregate statistics.

D.3 SCORE FUNCTION GRADIENT ESTIMATOR

To compute gradients with respect to the parameters θij of the latent graph distribution, we use
the Score Function Gradient Estimator (SFGE), also known as REINFORCE (Williams, 1992; Mo-
hamed et al., 2020). The SFGE allows us to estimate the gradient of an expectation of a function
L(A) as follows:

∇θEA∼Pθ(A)[L(A)] = EA∼Pθ(A)[L(A)∇θ logPθ(A)]

A known issue with the SFGE is its high variance (Mohamed et al., 2020). To mitigate this, we incor-
porate a baseline term, which reduces variance without introducing bias into the gradient estimate.
The gradient is then computed as:

∇θEA∼Pθ(A)[(L(A)− b)∇θ logPθ(A)]

We use a multi-sample baseline where, for each sample in a batch ofM sampled graphs, the baseline
b is constructed using the estimate of the loss from the other M − 1 samples.

D.4 LOSS FUNCTION

The model is trained to learn both the GNN parameters ψ and the graph distribution parameters θ by
minimizing the Energy Score (ES) (Gneiting & Raftery, 2007). The ES is a multivariate extension
of the Continuous Ranked Probability Score (CRPS), a proper scoring rule (Matheson & Winkler,
1976) that quantifies the compatibility between the model’s predictive distribution and the ground-
truth observation y.

Given M adjacency matrices {Am}Mm=1 sampled from the latent graph distribution Pθ(A), the em-
pirical ES loss is defined as:

LES =
1

M

M∑
m=1

∥fψ(x,Am)− y∥2 −
1

2M(M − 1)

∑
m̸=n

∥fψ(x,Am)− fψ(x,An)∥2

D.5 ADDITIONAL TRAINING PARAMETERS

All models are implemented in PyTorch (Paszke et al., 2017) and trained with the Adam optimizer
(Kingma & Ba, 2015). We use a Weight decay of 0, a batch size of 64, M equal to 32 and 40 epochs
per run. Scores were initialized so that θij ∼ U(0, 0.1)).

E EXPERIMENTAL DETAILS: VAE

This appendix summarizes the setup for the experiments with Variational Autoencoders, which we
adopt from the code available at the following link: https://github.com/jxmorris12/categorical-vae.

E.1 MODEL ARCHITECTURE

The Variational Autoencoder (VAE) is composed of an encoder network qs⃗(C⃗|x) and a decoder
network fψ(ŷ|C⃗). Both networks are implemented with a convolutional structure.

ENCODER & CATEGORICAL LATENT DISTRIBUTION

The encoder processes an input image x ∈ R28×28, computes a tensor of scores s⃗ ∈ RN×K − where
N is the number of latent categorical variables, and K is the number of classes for each variable
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− and outputs the latent probabilities qs⃗(C⃗|x). The default convolutional architecture consists of 3
convolutional layers with ReLU activations, followed by 2 fully-connected layers.

Thus, the latent space is defined by N independent categorical random variables, with each variable
taking one of K discrete states. The scores s⃗ ∈ RN×K computed by the encoder are transformed
into latent probabilities qs⃗(C⃗|x) with different parameterizations. We test three schemes for this
parameterization: the softmax function, the catnat parameterization with sigmoid activation function
and the catnat parameterization with natural activation function.

DECODER

The decoder takes a set of one-hot latent samples (one vector for each categorical distribution) C⃗ and
processes it through 2 fully-connected layers and 3 transposed convolutional layers to reconstruct
an image. A sigmoid activation function in the final layer ensures the output values are bounded
within [0, 1]. Thus, the decoder fψ(ŷ|C⃗) produces a reconstruction whose entries can be interpreted
as independent Bernoulli distributions over each pixel.

E.2 GUMBEL-SOFTMAX REPARAMETERIZATION

To maintain a differentiable computation graph, we use the Gumbel-Softmax trick (Jang et al., 2017)
to approximate sampling from qs⃗(C⃗|x). The temperature hyperparameter τ controls the smoothness
of the approximation; as τ → 0, the samples converge to discrete one-hot vectors. During training,
τ is annealed from an initial value of 1 to a minimum of 0.5 using an exponential decay rate of 3×
10−5. In the forward pass, we replace the dense C⃗ with its hard one-hot version while propagating
gradients through the relaxed sample using the Straight-Through estimator (Bengio et al., 2013).

E.3 LOSS FUNCTION

The model is trained by maximizing the Evidence Lower Bound (ELBO), which is bounded by the
loss LELBO = Lrecon + LKL.

RECONSTRUCTION LOSS Given the decoder’s output, the reconstruction loss Lrecon is the binary
cross-entropy (BCE) between the input and the output, averaged over the batch:

Lrecon = − 1

B

B∑
i=1

EC⃗∼qs⃗(C⃗|xi)
[log fψ(xi|C⃗)]

KL DIVERGENCE The term LKL is the Kullback-Leibler divergence between the approximate pos-
terior qs⃗(C⃗|x) and a fixed prior p(C⃗). The prior is a set of N independent, uniform categorical
distributions, i.e., p(C⃗n) = Categorical([ 1K , . . . ,

1
K ]) for each latent variable n. The KL divergence

is calculated analytically, summed over the N variables, and averaged over the batch:

LKL =
1

B

B∑
i=1

DKL(qs⃗(C⃗i|xi)||p(C⃗)) =
1

B

B∑
i=1

N∑
n=1

DKL(qs⃗(C⃗i,n|xi)||p(C⃗n))

F EXPERIMENTAL DETAILS: REINFORCEMENT LEARNING

This appendix summarizes the experimental setup for the Reinforcement Learning experiments,
which assess policy learning in discrete-action Atari environments. The implementation is adapted
from the high-quality PPO implementation provided by Huang et al. (2022).

F.1 ENVIRONMENT

We use the Breakout and Seaquest environments from the Atari Learning Environment (Bellemare
et al., 2013), accessed via the Gymnasium library (Towers et al., 2024). The raw game frames
undergo a standard preprocessing pipeline using a series of wrappers that, for example:

• Convert images to grayscale and resize them to 84× 84 pixels.
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• Stack 4 consecutive frames to capture temporal dynamics

• Clip the rewards to the range [−1, 1] to stabilize training.

This setup is standard for benchmarking performance on Atari games (Mnih et al., 2015).

F.2 MODEL ARCHITECTURE

The agent employs a shared-parameter actor-critic architecture with a convolutional network back-
bone:

• Shared Backbone: The network processes the stacked 4× 84× 84 input observations, first
normalizing pixel values by dividing by 255.0. It then passes through three convolutional
layers with ReLU activations. The network architecture is:

1. 32 filters of size 8× 8 with a stride of 4.
2. 64 filters of size 4× 4 with a stride of 2.
3. 64 filters of size 3× 3 with a stride of 1.

The output is flattened and passed through a fully-connected layer with 512 units (ReLU
activated). All layers are initialized using orthogonal initialization.

• Policy and Value Heads: The 512-dimensional latent representation is fed into two separate
linear heads:

– The policy head (actor) outputs a vector of scores, one for each possible action.
– The value head (critic) outputs a single scalar estimating the state-value.

We test two methods to convert the policy head’s scores into action probabilities: the standard
softmax function and the catnat parameterization using the natural activation function.

F.3 PROXIMAL POLICY OPTIMIZATION

The model is trained using the Proximal Policy Optimization (PPO) algorithm (Schulman et al.,
2017). PPO is an on-policy algorithm that optimizes a clipped surrogate objective function. The
total loss is a combination of the policy loss, the value function loss, and an entropy bonus to
encourage exploration:

J(θ) = Êt
[
LCLIP
t (θ)− c1L

VF
t (θ) + c2H[πθ](st)

]
,

where the clipped surrogate is

LCLIP
t (θ) = min

(
rt(θ) Ât, clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
Ât

)
,

Here, rt(θ) =
πθ(at|st)
πθold (at|st)

is the probability ratio, and Ât is the advantage estimate. Advantages are
calculated using Generalized Advantage Estimation (GAE) (Schulman et al., 2015) with γ = 0.99
and λ = 0.95, and are normalized per mini-batch. The value loss is typically

LVF
t (θ) = 1

2

(
Vθ(st)− V̂t

)2
,

andH[πθ](st) denotes the policy entropy. The clipping ϵ and coefficients c1, c2 are hyperparameters.

F.4 HYPERPARAMETER OPTIMIZATION

Due to the high computational cost, we performed a targeted hyperparameter search instead of an
exhaustive grid search. For each parameterization method and environment, we ran 160 trials using
a Tree-structured Parzen Estimator (TPE) sampler (Bergstra et al., 2011) to find promising hyper-
parameter configurations. Table 5 summarizes each parameter’s type, sampling range, and any
non-default scale or step size. The top 10 configurations identified by this search were then trained
with 10 different random seeds to ensure more reliable performance statistics.
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Table 5: Hyperparameter sweep: types, sampling ranges, and non-default scales/steps.

Parameter Type Range Scale / Step / Notes

learning rate float 5.0× 10−5 – 1.0× 10−2 log scale
num steps int 32 – 512 step = 32
update epochs int 1 – 16 step = 2
clip coef float 0.01 – 0.90 linear sampling
ent coef float 0.0 – 1.0 linear sampling
num envs int 8 – 16 step = 2
num minibatches int 2 – 16 step = 4
max grad norm float 0.1 – 10.0 step = 0.1

F.5 ADDITIONAL TRAINING PARAMETERS

We trained all models for a total of 8 million timesteps using the Adam optimizer (Kingma & Ba,
2015) with an ϵ of 10−5. The learning rate, identified via hyperparameter search, was linearly
annealed to zero over the course of training.

G LARGE LANGUAGE MODEL (LLM) USAGE

In accordance with the guideline requirements3, we acknowledge that LLMs were employed to
refine and rephrase portions of the text. The ideas, their development, the interpretation of the
results, and all scientific contributions were carried out solely by the authors.

3See ”The Use of Large Language Models (LLMs)” at https://iclr.cc/Conferences/2026/AuthorGuide
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