May 26, 2025

Graph Structure Learning

Alessandro **Manenti**

Graph Machine Learning Group (gmlg.ch) The Swiss AI Lab IDSIA Università della Svizzera italiana

Introduction

GNNs use an adjacency matrix A as an effective inductive bias.

② A might be unknown or of coarsely available

Some examples:

Can we learn relationships from data?

L

Introduction

It is possible to learn relations from data

Graph Structure Learning (GSL) investigates methods to infer relational structures from data.

GSL effectiveness depends on:

- 1. The presence of a "true" underlying relational structure.
- 2. The number of available data

The Transformer learns relational structures from data too:

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V \qquad \text{with: } Q/K/V = W_Q/W_K/W_V \cdot \boldsymbol{X}$$

Q: Where is the relational structure here?

2

Attention mechanism

$$\mathrm{Attention}(Q,K,V) = \mathrm{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V \qquad \mathrm{with:} \ Q/K/V = W_Q/W_K/W_V \cdot \boldsymbol{X}$$

3

Overview

Using original structure or Adjacency matrix initialization	Graph structure learning	Transformer-based techniques
· Pre-processing techniques used to infer an initial, static topology	· Techniques that parametrize and optimize the structure to solve a task	· Techniques based on the attention mechanism
Limited data —————————————————————————————————	→	Abundant data Computationally expensive

• For further reading, refer to [1], [2]

^[1] Zhiyao et al., "Opengsl: A comprehensive benchmark for graph structure learning" 2024.

^[2] Fatemi et al., "Ugsl: A unified framework for benchmarking graph structure learning" 2023.

General GSL Framework

- Input: $m{X} \in \mathbb{R}^{N imes D}$ and, optionally, an initial adjacency matrix $m{A}^{(0)} \in \mathbb{R}^{N imes N}$
- Trainable modules: Edge Scorer and GNN
- Loss function: Usually designed to solve a (self-)supervised task

5

Structure initialization techniques

Structure initialization techniques

- Extract (or modify) an adjacency matrix independently from the downstream task.
- Different techniques rely on different assumptions.
- Topological structures obtained from this pre-processing can be used as initialization for the GSL edge scorer.

Some examples include:

- 1. Pearson Correlation.
- 2. Granger causality.
- 3. Pairwise input similarity.
- 4. Dirichlet Energy Minimization.
- 5. Rewiring techniques (if initial $A^{(0)}$ given).

6

Pearson correlation

The Pearson correlation coefficient is a measure of the linear relationship between two variables.

$$\rho \equiv \frac{\mathsf{Cov}(\boldsymbol{X}_i, \boldsymbol{X}_j)}{\sigma_{\boldsymbol{X}_i} \sigma_{\boldsymbol{X}_j}}$$

For real-world data the formula is:

$$\hat{\rho} = \frac{\sum_{d=1}^{D} (\boldsymbol{X}_{i,d} - \overline{\boldsymbol{X}_i}) (\boldsymbol{X}_{j,d} - \overline{\boldsymbol{X}_j})}{\sqrt{\sum_{d=1}^{D} (\boldsymbol{X}_{i,d} - \overline{\boldsymbol{X}_i})^2 \sum_{d=1}^{D} (\boldsymbol{X}_{j,d} - \overline{\boldsymbol{X}_j})^2}}$$

An adjacency matrix A can be built from $\hat{\rho}$.

Pearson correlation

- ρ is a normalized value: $-1 \le \rho \le 1$
- The magnitude of ρ indicates the strength of the relationship,
- The sign indicates its direction.
- Be aware that it is not perfect! (see Figure)

Figure 1: Pearson correlation for different sets of (x,y) points. Image from Wikipedia

Granger causality

For Granger causality, we restrict X to be a set of time series.

- Granger causality test exists if time series X_i "causes" time series X_j .
- Test whether past values of X_i contain useful information for predicting X_j , beyond the information contained in past values of X_j alone.

Build two linear models:

Restricted model (without X_i)

Unrestricted model (with X_j)

$$\boldsymbol{X}_{i,t} = \alpha_0 + \sum_{a=1}^{p} \alpha_i \, \boldsymbol{X}_{i,t-a} + \epsilon_t \qquad \qquad \boldsymbol{X}_{i,t} = \alpha_0 + \sum_{a=1}^{p} \alpha_a \, \boldsymbol{X}_{i,t-a} + \sum_{b=1}^{p} \gamma_b \, \boldsymbol{X}_{j,t-b} + \eta_t$$

The Granger causality test assesses whether X_j helps to predict X_i .

9

Granger causality

Formulate the null hypothesis H_0 and alternative hypothesis H_1 :

$$H_0: \quad \gamma_1 = \gamma_2 = \dots = \gamma_p = 0$$

$$H_1: \;\;$$
 At least one $\gamma_b
eq 0$ for some $b \in \{1,2,\ldots,p\}$

 H_0 : none of the past values of X_i contain linear predictive information about the current value of X_i .

To test H_0 , compare the fit of the restricted and unrestricted models. This is typically done using an F-test:

- 1. Compute the residual sum of squares (RSS) for both the restricted model (RSS $_R$) and the the unrestricted model (RSS $_U$)
- 2. Compute the F-statistic:

$$\frac{(\mathsf{RSS}_R - \mathsf{RSS}_U)/p}{\mathsf{RSS}_U/(T-2p-1)}$$

Under H_0 , the F-statistic follows an F-distribution with p and (T-2p-1) degrees of freedom.

3. Check if the p-value is below a predetermined significance level.

Pairwise input similarity

- The most common initialization technique if ${m A}^{(0)}$ is not given.
- Assumption: similar inputs should be connected.
- Input similarity can be defined in different ways. For example:
 - 1. Cosine similarity $\left(\frac{X_i \cdot X_j}{||X_i||||X_j||}\right)$
 - 2. Decreasing function of a distance \mathbf{d} (e.g., $\frac{1}{\mathbf{d}(X_i,X_j)}$)
 - 3. Kernels (e.g., the RBF kernel: $e^{-||{m X}_i-{m X}_j||^2}$)
- Easy to implement.
- Computationally and memory efficient.
- \odot If $A^{(0)}$ is not perfected afterwards, performance on the considered task may not exceed that of a structure agnostic baseline [3].

^[3] Errica, "On class distributions induced by nearest neighbor graphs for node classification of tabular data" 2024.

Dirichlet Energy Minimization

- Graph signal processing perspective. [4], [5]
- Often considers symmetric and non-negative matrices. [6]
- Smoothness assumption: in amenable graph structures the graph signal varies smoothly across edges.

Define the Dirichlet Energy:

$$\mathcal{E} = rac{1}{2} \sum_{i,j} oldsymbol{A}_{ij} ||oldsymbol{X}_i - oldsymbol{X}_j||^2 \equiv rac{1}{2} \sum_{i,j} oldsymbol{A}_{ij} oldsymbol{Z}_{ij}$$

Minimization problem for smooth signals:

$$oldsymbol{A}^{(0)} = \mathop{\mathsf{argmin}}_{oldsymbol{A}} \left\{ \; rac{1}{2} \sum_{i,j} oldsymbol{A}_{ij} oldsymbol{Z}_{ij}
ight\}$$

Q: What is the trivial solution of this minimization problem?

^[4] Dong et al., "Learning Laplacian matrix in smooth graph signal representations" 2016.

^[5] Dong et al., "Learning graphs from data: A signal representation perspective" 2019.

^[6] Kalofolias, "How to learn a graph from smooth signals" 2016.

Dirichlet Energy Minimization

- An additional term f(A) imposes prior information and avoids converging towards the trivial solution.
- The complete minimization problem becomes:

$$oldsymbol{A}^{(0)} = \mathop{\mathsf{argmin}}_{oldsymbol{A}} \left\{ \; rac{1}{2} \sum_{i,j} oldsymbol{A}_{ij} oldsymbol{Z}_{ij} + \lambda f(oldsymbol{A})
ight\}$$

The Dirichlet Energy Minimization problem and provides a theoretical framework to different input similarity techniques. For example, if:

$$f(\boldsymbol{A}) = 2\frac{\sigma^2}{\lambda} \sum_{ij} \boldsymbol{A}_{ij} (\log(\boldsymbol{A}_{ij}) - 1)$$

the solution to the minimization problem is a RBF initialization $A_{ij}^{(0)} = e^{-\frac{||\mathbf{X}_i - \mathbf{X}_j||^2}{2\sigma^2}}$

- \bigcirc Interpretable assumptions embedded in f
- © Rich literature present
- Less straightforward to implement (and optimize)

Rewiring techniques

- GNNs suffer from oversmoothing and oversquashing [7]
- Rewiring modifies the initial connectivity $m{A}^{(0)}$ to alleviate those problems. [8]

Oversmoothing: repeated rounds of message passing make node representations converge to similar embeddings.

Q: Connect the Dirichlet energy to oversmoothing: how does it change adding more GNN layers?

^[7] Rusch et al., "A survey on oversmoothing in graph neural networks" 2023.

^[8] Attali et al., "Rewiring Techniques to Mitigate Oversquashing and Oversmoothing in GNNs: A Survey" 2024.

Rewiring techniques

Oversquashing: exponential loss of information increases with the number of GNN layers employed. Notation:

- $h_i^{(\ell)}$: representation of node i at layer ℓ .
- \hat{A} : normalized augmented adjacency matrix.

Given two nodes i and j at distance r, it has been shown [9]:

$$\left| \frac{\partial h_i^{(r)}}{\partial x_j} \right| \leq (K)^r (\hat{\boldsymbol{A}}^r)_{ij}$$
 with K being a GNN-specific constant

- © Changing the graph structure can alleviate both.
- [9] proposes to iteratively add and remove edges via the Stochastic Discrete Ricci Flow algorithm.
- Some rewiring techniques completely ignore the original structure [10].

 $^{[9] \ \} Topping\ et\ al., "Understanding\ over-squashing\ and\ bottlenecks\ on\ graphs\ via\ curvature"\ 2021.$

^[10] Attali et al., "Delaunay Graph: Addressing Over-Squashing and Over-Smoothing Using Delaunay Triangulation" 2024.

Edge Scorer

General GSL Framework

Edge Scorer

- An edge scorer is a parametric function $\xi_{\theta}(X, A)$ that returns relational structures Φ , often modeled as pairwise scores between inputs.
- Edge Scorer's parameters θ can be trained on the considered downstream task.

An edge scorer should:

- align, whereas possible, with physical model: Are scores input-dependent? Should complex relationships be considered?
- be designed having in mind constraints set by the problem. How many nodes are present? How much data is available?

Edge Scorer's parameters can often be initialized using extracted adjacency matrices.

Lookup table

Assume a fixed and input-independent graph structure $\longrightarrow \xi_{\theta}(X, A) = \xi_{\theta}$.

$N \times N$ table

The function ξ_{θ} is a table of parameters:

$$\xi_{\theta} = \mathbf{\Phi} \in \mathbb{R}^{N \times N}$$

Embedding factorization

Parameters contained in node embeddings:

$$\mathcal{E}_{ heta} = \mathbf{\Phi} = \mathbf{Z}_{s} \mathbf{Z}_{t}^{T}$$
 with $\mathbf{Z}_{\cdot} \in \mathbb{R}^{N imes d}$

Finer control

More parameter efficient

Lookup table

Embedding factorization

- © Common choice in the literature [11]–[14]
- © Easy to implement and learn
- May oversimplify the problem

^[11] Franceschi $\it et al.$, "Learning discrete structures for graph neural networks" 2019.

^[12] Wu et al., "Graph wavenet for deep spatial-temporal graph modeling" 2019.

^[13] Cini et al., "Sparse Graph Learning from Spatiotemporal Time Series" 2023.

^[14] Manenti et al., "Learning Latent Graph Structures and their Uncertainty" 2024.

Input dependent

The Edge Scorer $\xi_{\theta}(X, A)$ is a function, enabling different inductive biases [2], [15], [16]:

- Some methods simply use a MLP
- Some others employ a Graph Neural Networks
- Others use simple attention-based architectures

A Iterative score updates and GNN processing blur the distinction between the Edge Scorer and GNN. In those scenarios, a clear decomposition may not be possible.

As a general rule: keep things simple!

^[2] Fatemi et al., "Ugsl: A unified framework for benchmarking graph structure learning" 2023.

^[15] Wang et al., "Dynamic graph cnn for learning on point clouds" 2019.

^[16] Kazi et al., "Differentiable graph module (dgm) for graph convolutional networks" 2022.

Post-processing techniques &

Loss functions

General GSL Framework

Post-processing techniques

The score matrix Φ is transformed into an adjacency matrix \tilde{A} to enforce desired properties.

Common objectives include:

- Training facilitation: row normalization, value clamping, etc.
- Enforcement of structures: symmetrization, minimum spanning tree construction, etc.
- Sparsification: top-k selection, Bernoulli sampling, thresholding, etc.

Specific application requirements often necessitate post-processing techniques.

▲ Post-processing can introduce unwished consequences.

Let's focus on sparsification techniques, as it is a desirable property.

Sparse matrices

- A sparse matrix is a matrix in which the majority of elements are zero.
- Sparsity of a matrix = percentage of zero elements.

Q: Why do you think sparse matrices are desirable?

- Most common sparse representation of adjacency matrices in GDL is the COO (coordinate) format: two tensors, one for non-zero indices location and the other for corresponding values:
 e.g., indices = [[0, 3, 5], [2, 1, 5]] values = [0.9, 0.9, 0.5]
- Other possibilities: CSR, CSC, BSR, BSC, ... formats

Sparse Matrices

Q: What is the computational complexity of a dense GCN layer X' = AXW?

Q: What is the computational complexity of the same GCN layer with sparse matrix multiplications?

Two post-processing techniques that enforce sparsity:

Thresholding

 ${\it Keep\ edges\ if\ score} > {\it threshold}$

Bernoulli sampling

Treat scores as logits to sample from

Thresholding

• Thresholding involves selecting a threshold hyperparameter au and zeroing entries for which $\Phi_{ij} < au$.

- © Can control sparsity level
- Easy to implement
- Biased gradient

Q: Why is the gradient biased?

 Other sparsification methods, such as top-k or top-p selection, exhibit similar advantages and disadvantages.

Bernoulli sampling

• Sample each edge with probability Φ_{ij} (or sigmoid(Φ_{ij})).

- Offers an inherently probabilistic framework.
- Gradient propagation in stochastic operations e.g. VAEs is challenging. In VAEs problem was solved with the reparameterization trick.
- Issues arise as gradients are computed with respect to $\Phi\colon$

$$\nabla_{\mathbf{\Phi}} \mathbb{E}_{A \sim P_{\mathbf{\Phi}}} [\mathcal{L}(A, \boldsymbol{X})]$$

Reparameterization trick

- Direct sampling from a distribution (e.g., Gaussian) introduces a non-differentiable operation, blocking gradient flow.
- Reparameterization trick solves this problem separating the stochastic nature from the trainable parameters
- 1. Express the sampled variable \hat{A} as a deterministic function of trainable parameters Φ and a random variable ϵ .
- 2. Example (Gaussian): $\hat{A} = \mu(\Phi) + \sigma(\Phi) \odot \epsilon$, where $\epsilon \sim \mathcal{N}(0, \mathbf{I})$. $\mu(\Phi)$ represents the mean tensor, parameterized by Φ . $\sigma(\Phi)$ represents the standard deviation tensor, parameterized by Φ . \odot is the element wise multiplication.
- Being Bernoulli random variables discrete, the reparameterization is not applicable.

Bernoulli Sampling

 Issue arises as gradients are calculated with respect to Φ, the parameter vector defining the distribution:

$$\nabla_{\mathbf{\Phi}} \mathbb{E}_{A \sim P_{\mathbf{\Phi}}} [\mathcal{L}(A, \boldsymbol{X})]$$

- Different possible gradient estimators for Bernoulli Random Variables [17]:
 - 1. Straight-Through gradient estimator (treat discrete sample as identity in backward pass) [18]
 - 2. Gumbel-Softmax trick (continuous relaxation of Bernoulli) [19]
- Both methods need dense computation or biased gradient estimation.
 - 3. REINFORCE and/or Score-Function gradient estimator. [20], [21].
- [17] Mohamed et al., "Monte carlo gradient estimation in machine learning" 2020.
- $[18] \ \ Bengio\ et\ al., "Estimating\ or\ propagating\ gradients\ through\ stochastic\ neurons\ for\ conditional\ computation"\ 2013.$
- [19] Jang et al., "Categorical Reparametrization with Gumble-Softmax" 2017.
- [20] Williams, "Simple statistical gradient-following algorithms for connectionist reinforcement learning" 1992.
- $[21] \ \ Sutton\ et\ al., "Policy\ gradient\ methods\ for\ reinforcement\ learning\ with\ function\ approximation"\ 1999.$

Bernoulli Sampling - REINFORCE

The score function gradient estimator directly approximates the gradient of an expectation by leveraging the log-likelihood trick to enable gradient computation through discrete random variables.

$$\nabla_{\mathbf{\Phi}} \mathbb{E}_{A \sim P_{\mathbf{\Phi}}} [\mathcal{L}(A, \mathbf{X})] = \nabla_{\mathbf{\Phi}} \int \mathcal{L}(A, \mathbf{X}) P_{\mathbf{\Phi}}(A) dA$$

$$= \int \mathcal{L}(A, \mathbf{X}) \nabla_{\mathbf{\Phi}} P_{\mathbf{\Phi}}(A) dA$$

$$= \int \mathcal{L}(A, \mathbf{X}) P_{\mathbf{\Phi}}(A) \nabla_{\mathbf{\Phi}} \log P_{\mathbf{\Phi}}(A) dA$$

$$= \mathbb{E}_{A \sim P_{\mathbf{\Phi}}} [\mathcal{L}(A, \mathbf{X}) \nabla_{\mathbf{\Phi}} \log P_{\mathbf{\Phi}}(A)]$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(A_i, \mathbf{X}) \nabla_{\mathbf{\Phi}} \log P_{\mathbf{\Phi}}(A_i)$$

- Sparse computations and unbiased gradient estimates.
- (Slow or no convergence). It can be mitigated using control variates.

Bernoulli Sampling - REINFORCE

- Control variates are used to reduce the variance of the gradient estimate.
- Idea: subtract a function with known expectation from the noisy estimate.

How it works:

- 1. Let $\nabla_{\mathbf{\Phi}} \mathbb{E}_{A \sim P_{\mathbf{\Phi}}}[\mathcal{L}(A, \boldsymbol{X})]$ be the gradient to estimate.
- 2. Find a control variate c(A, X) with known expectation $\mathbb{E}_{A \sim P_{\Phi}}[c(A, X)]$.
- 3. Modify the function:

$$\nabla_{\mathbf{\Phi}} \mathbb{E}_{A \sim P_{\mathbf{\Phi}}} [\mathcal{L}(A, \boldsymbol{X})] \approx \nabla_{\mathbf{\Phi}} \mathbb{E}_{A \sim P_{\mathbf{\Phi}}} [\mathcal{L}(A, \boldsymbol{X}) - \beta (c(A, \boldsymbol{X}) - \mathbb{E}_{A \sim P_{\mathbf{\Phi}}} [c(A, \boldsymbol{X})])]$$

- \blacktriangle The control variate c(A) should be correlated with $\mathcal{L}(A, X) \nabla_{\Phi} \log P_{\Phi}(A)$.
- $oldsymbol{\Lambda}$ The expectation $\mathbb{E}_{A\sim P_{oldsymbol{\Phi}}}[c(A)]$ must be known or easily computable.

Loss functions

Total loss typically composed of two components:

- (Un/Self-)Supervised Loss: Drives learning towards meaningful graph structures for solving a specific downstream task.
- 2. Regularization Loss: Enforces desired properties and constraints on the learned graph.

(Self-)Supervised Loss	Regularization Loss
Downstream task (MAE, MSE, Cross-Entropy,)	Closeness to initial graph structure
Denoising loss	Large weights penalization (L1, L2)
Contrastive loss	Discourage large / low degree nodes
	Enforce symmetry
	Enforce or discourage specific graph density

Conclusions

Conclusions

- Learning relational structures offers a powerful alternative to rely on pre-defined or potentially flawed adjacency matrices
- We explored a range of techniques. Each offers different trade-offs in terms of complexity, expressiveness, and gradient estimation properties.

Some bits of advice:

- Don't underestimate pre-processing! If possible, initialize your scores.
- While challenging, try to visualize small learned graphs. Do the learned connections make sense in your domain?
- GSL papers are noisy! Check if the claims made are sustained in practice with rigorous validations.

Thank you for your attention!

Questions?

References i

- [1] Z. Zhiyao, S. Zhou, B. Mao, et al., "Opengsl: A comprehensive benchmark for graph structure learning," Advances in Neural Information Processing Systems, vol. 36, 2024.
- [2] B. Fatemi, S. Abu-El-Haija, A. Tsitsulin, et al., "Ugsl: A unified framework for benchmarking graph structure learning," arXiv preprint arXiv:2308.10737, 2023.
- [3] F. Errica, "On class distributions induced by nearest neighbor graphs for node classification of tabular data," Advances in Neural Information Processing Systems, vol. 36, 2024.
- [4] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, "Learning laplacian matrix in smooth graph signal representations," *IEEE Transactions on Signal Processing*, vol. 64, no. 23, pp. 6160–6173, 2016.
- [5] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, "Learning graphs from data: A signal representation perspective," IEEE Signal Processing Magazine, vol. 36, no. 3, pp. 44–63, 2019.
- [6] V. Kalofolias, "How to learn a graph from smooth signals," in Artificial intelligence and statistics, PMLR, 2016, pp. 920–929.
- [7] T. K. Rusch, M. M. Bronstein, and S. Mishra, "A survey on oversmoothing in graph neural networks," arXiv preprint arXiv:2303.10993, 2023.

References ii

- [8] H. Attali, D. Buscaldi, and N. Pernelle, "Rewiring techniques to mitigate oversquashing and oversmoothing in gnns: A survey," arXiv preprint arXiv:2411.17429, 2024.
- [9] J. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong, and M. M. Bronstein, "Understanding over-squashing and bottlenecks on graphs via curvature," arXiv preprint arXiv:2111.14522, 2021.
- [10] H. Attali, D. Buscaldi, and N. Pernelle, "Delaunay graph: Addressing over-squashing and over-smoothing using delaunay triangulation," in Forty-first International Conference on Machine Learning, 2024.
- [11] L. Franceschi, M. Niepert, M. Pontil, and X. He, "Learning discrete structures for graph neural networks," in International conference on machine learning, PMLR, 2019, pp. 1972–1982.
- [12] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, "Graph wavenet for deep spatial-temporal graph modeling," in Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019, pp. 1907–1913.
- [13] A. Cini, D. Zambon, and C. Alippi, "Sparse graph learning from spatiotemporal time series," *Journal of Machine Learning Research*, vol. 24, pp. 1–36, 2023.
- [14] A. Manenti, D. Zambon, and C. Alippi, "Learning latent graph structures and their uncertainty," arXiv preprint arXiv:2405.19933, 2024.

References iii

- [15] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, "Dynamic graph cnn for learning on point clouds," ACM Transactions on Graphics (tog), vol. 38, no. 5, pp. 1–12, 2019.
- [16] A. Kazi, L. Cosmo, S.-A. Ahmadi, N. Navab, and M. M. Bronstein, "Differentiable graph module (dgm) for graph convolutional networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 2, pp. 1606–1617, 2022.
- [17] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih, "Monte carlo gradient estimation in machine learning," *The Journal of Machine Learning Research*, vol. 21, no. 1, pp. 5183–5244, 2020.
- [18] Y. Bengio, N. Léonard, and A. Courville, "Estimating or propagating gradients through stochastic neurons for conditional computation," arXiv preprint arXiv:1308.3432, 2013.
- [19] E. Jang, S. Gu, and B. Poole, "Categorical reparametrization with gumble-softmax," in International Conference on Learning Representations (ICLR 2017), OpenReview. net, 2017.
- [20] R. J. Williams, "Simple statistical gradient-following algorithms for connectionist reinforcement learning," *Machine learning*, vol. 8, pp. 229–256, 1992.
- [21] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, "Policy gradient methods for reinforcement learning with function approximation," Advances in neural information processing systems, vol. 12, 1999.