
May 26, 2025

Graph Structure Learning

AlessandroManenti

Graph Machine Learning Group (gmlg.ch)
The Swiss AI Lab IDSIA
Università della Svizzera italiana

https://gmlg.ch/
https://gmlg.ch/
https://idsia.ch/
https://usi.ch/

Introduction

Introduction

Introduction
GNNs use an adjacency matrix A as an effective inductive bias.

⌢ A might be unknown or of coarsely available

Some examples:

Time

Can we learn relationships from data?
1

Introduction

Introduction

⌣ It is possible to learn relations from data

Graph Structure Learning (GSL) investigates methods to infer relational structures from data.

GSL effectiveness depends on:

1. The presence of a "true” underlying relational structure.
2. The number of available data

The Transformer learns relational structures from data too:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V with: Q/K/V = WQ/WK/WV ·X

Q: Where is the relational structure here?

2

Introduction

Attention mechanism

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V with: Q/K/V = WQ/WK/WV ·X

=

=

=

=

=

=

Initial data

GNN

Post
Processing

Loss

Backpropagation

A

Scores 𝚽

initial

input

Input
∼

Edge Scorer

Pre Processing /
Initialization

Scores 𝚽

0.5

0.9

0.9
0.5

0.9

0.90.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1

0.1
1

1

1

1

1

Scores 𝚽

= •

Zs

ZT
t

Token 1
Token 2

Token 4
Token 3

Token 5
Token 6

Softmax(
Softmax(

Softmax(
Softmax(

Softmax(
Softmax(

T
o
k
e
n
1

T
o
k
e
n
2

T
o
k
e
n
3

T
o
k
e
n
4

T
o
k
e
n
5

T
o
k
e
n
6

)
)

)
)

)
)

dk
√

=

Token 1
Token 2

Token 4
Token 3

Token 5
Token 6

Q

K V

3

Introduction

Overview

Using original structure or Graph structure learning Transformer-based
Adjacency matrix initialization techniques

· Pre-processing techniques used · Techniques that parametrize and · Techniques based on the
to infer an initial, static topology optimize the structure to solve a task attention mechanism
Limited data Abundant data
Computationally efficient Computationally expensive

• For further reading, refer to [1], [2]

[1] Zhiyao et al., “Opengsl: A comprehensive benchmark for graph structure learning” 2024.
[2] Fatemi et al., “Ugsl: A unified framework for benchmarking graph structure learning” 2023.

4

Introduction

General GSL Framework

=

=

=

=

=

=

input data

GNNPost
Processing

Loss
Function

Backpropagation

A

Scores 𝚽

input A

input X

A
∼

Edge Scorer 𝜁

Pre Processing /
Initialization

Scores 𝚽

0.5

0.9

0.9

0.5

0.9

0.90.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1

0.1

1

1

1

1

1

Scores 𝚽

= •

Zs

ZT
t

Token 1
Token 2

Token 4
Token 3

Token 5
Token 6

Softmax(
Softmax(

Softmax(
Softmax(

Softmax(
Softmax(

T
o
k
e
n
1

T
o
k
e
n
2

T
o
k
e
n
3

T
o
k
e
n
4

T
o
k
e
n
5

T
o
k
e
n
6

)
)

)
)

)
)

dk
√

=

Token 1
Token 2

Token 4
Token 3

Token 5
Token 6

Q

K V

(0)

• Input: X ∈ RN×D and, optionally, an initial adjacency matrix A(0) ∈ RN×N

• Trainable modules: Edge Scorer and GNN
• Loss function: Usually designed to solve a (self-)supervised task

5

Structure initialization
techniques

Structure initialization techniques

Structure initialization techniques

• Extract (or modify) an adjacency matrix independently from the downstream task.
• Different techniques rely on different assumptions.

⌣ Topological structures obtained from this pre-processing can be used as initialization for the GSL edge
scorer.

Some examples include:

1. Pearson Correlation.
2. Granger causality.
3. Pairwise input similarity.
4. Dirichlet Energy Minimization.
5. Rewiring techniques (if initial A(0) given).

6

Structure initialization techniques

Pearson correlation

The Pearson correlation coefficient is a measure of the linear relationship between two variables.

ρ ≡ Cov(Xi,Xj)

σXiσXj

For real-world data the formula is:

ρ̂ =

∑D
d=1(Xi,d −Xi)(Xj,d −Xj)√∑D

d=1(Xi,d −Xi)2
∑D

d=1(Xj,d −Xj)2

An adjacency matrix A can be built from ρ̂.

7

Structure initialization techniques

Pearson correlation

• ρ is a normalized value: −1 ≤ ρ ≤ 1

• The magnitude of ρ indicates the strength of the
relationship,

• The sign indicates its direction.
• Be aware that it is not perfect! (see Figure)

Figure 1: Pearson correlation for different sets of (x, y)
points. Image from Wikipedia

8

Structure initialization techniques

Granger causality

For Granger causality, we restrict X to be a set of time series.

• Granger causality test exists if time series Xi "causes" time series Xj .
• Test whether past values of Xi contain useful information for predicting Xj , beyond the information

contained in past values of Xj alone.

Build two linear models:
Restricted model (without Xj)

Xi,t = α0 +

p∑
a=1

αi Xi,t−a + ϵt

Unrestricted model (with Xj)

Xi,t = α0 +

p∑
a=1

αa Xi,t−a +

p∑
b=1

γb Xj,t−b + ηt

The Granger causality test assesses whether Xj helps to predict Xi.

9

Structure initialization techniques

Granger causality
Formulate the null hypothesis H0 and alternative hypothesis H1:

H0 : γ1 = γ2 = · · · = γp = 0

H1 : At least one γb ̸= 0 for some b ∈ {1, 2, . . . , p}

H0: none of the past values of Xj contain linear predictive information about the current value of Xi.

To test H0, compare the fit of the restricted and unrestricted models. This is typically done using an F-test:

1. Compute the residual sum of squares (RSS) for both the restricted model (RSSR) and the the
unrestricted model (RSSU)

2. Compute the F-statistic:
(RSSR − RSSU)/p

RSSU/(T − 2p− 1)

Under H0, the F-statistic follows an F-distribution with p and (T − 2p− 1) degrees of freedom.
3. Check if the p-value is below a predetermined significance level.

10

Structure initialization techniques

Pairwise input similarity

• The most common initialization technique if A(0) is not given.
• Assumption: similar inputs should be connected.
• Input similarity can be defined in different ways. For example:

1. Cosine similarity
(Xi·Xj

||Xi||||Xj ||
)

2. Decreasing function of a distance d
(

e.g., 1
d(Xi,Xj)

)
3. Kernels

(
e.g., the RBF kernel: e−||Xi−Xj ||2

)
⌣ Easy to implement.
⌣ Computationally and memory efficient.
⌢ If A(0) is not perfected afterwards, performance on the considered task may not exceed that of a

structure agnostic baseline [3].

[3] Errica, “On class distributions induced by nearest neighbor graphs for node classification of tabular data” 2024.

11

Structure initialization techniques

Dirichlet EnergyMinimization
• Graph signal processing perspective. [4], [5]
• Often considers symmetric and non-negative matrices. [6]
• Smoothness assumption: in amenable graph structures the graph signal varies smoothly across

edges.

Define the Dirichlet Energy:

E =
1

2

∑
i,j

Aij ||Xi −Xj ||2 ≡ 1

2

∑
i,j

AijZij

Minimization problem for smooth signals:

A(0) = argmin
A

{
1

2

∑
i,j

AijZij

}
Q: What is the trivial solution of this minimization problem?

[4] Dong et al., “Learning Laplacian matrix in smooth graph signal representations” 2016.
[5] Dong et al., “Learning graphs from data: A signal representation perspective” 2019.
[6] Kalofolias, “How to learn a graph from smooth signals” 2016.

12

Structure initialization techniques

Dirichlet EnergyMinimization
• An additional term f(A) imposes prior information and avoids converging towards the trivial

solution.
• The complete minimization problem becomes:

A(0) = argmin
A

{
1

2

∑
i,j

AijZij + λf(A)

}

⌣ The Dirichlet Energy Minimization problem and provides a theoretical framework to different input
similarity techniques. For example, if:

f(A) = 2
σ2

λ

∑
ij

Aij(log(Aij)− 1)

the solution to the minimization problem is a RBF initialization A
(0)
ij = e

−
||Xi−Xj ||

2

2σ2

⌣ Interpretable assumptions embedded in f

⌣ Rich literature present
⌢ Less straightforward to implement (and optimize) 13

Structure initialization techniques

Rewiring techniques

• GNNs suffer from oversmoothing and oversquashing [7]
• Rewiring modifies the initial connectivity A(0) to alleviate those problems. [8]

Oversmoothing: repeated rounds of message passing make node representations converge to similar
embeddings.

Q: Connect the Dirichlet energy to oversmoothing: how does it change adding more GNN layers?

[7] Rusch et al., “A survey on oversmoothing in graph neural networks” 2023.
[8] Attali et al., “Rewiring Techniques to Mitigate Oversquashing and Oversmoothing in GNNs: A Survey” 2024.

14

Structure initialization techniques

Rewiring techniques

Oversquashing: exponential loss of information increases with the number of GNN layers employed.
Notation:
• h

(ℓ)
i : representation of node i at layer ℓ.

• Â: normalized augmented adjacency matrix.

Given two nodes i and j at distance r, it has been shown [9]:∣∣∣∣∂h(r)
i

∂xj

∣∣∣∣ ≤ (K)r(Âr)ij with K being a GNN-specific constant

⌣ Changing the graph structure can alleviate both.
• [9] proposes to iteratively add and remove edges via the Stochastic Discrete Ricci Flow algorithm.
• Some rewiring techniques completely ignore the original structure [10].

[9] Topping et al., “Understanding over-squashing and bottlenecks on graphs via curvature” 2021.
[10] Attali et al., “Delaunay Graph: Addressing Over-Squashing and Over-Smoothing Using Delaunay Triangulation” 2024.

15

Edge Scorer

Edge Scorer

General GSL Framework

=

=

=

=

=

=

input data

GNNPost
Processing

Loss
Function

Backpropagation

A

Scores 𝚽

input A

input X

A
∼

Edge Scorer 𝜁

Pre Processing /
Initialization

Scores 𝚽

0.5

0.9

0.9

0.5

0.9

0.90.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1

0.1

1

1

1

1

1

Scores 𝚽

= •

Zs

ZT
t

Token 1
Token 2

Token 4
Token 3

Token 5
Token 6

Softmax(
Softmax(

Softmax(
Softmax(

Softmax(
Softmax(

T
o
k
e
n
1

T
o
k
e
n
2

T
o
k
e
n
3

T
o
k
e
n
4

T
o
k
e
n
5

T
o
k
e
n
6

)
)

)
)

)
)

dk
√

=

Token 1
Token 2

Token 4
Token 3

Token 5
Token 6

Q

K V

(0)

16

Edge Scorer

Edge Scorer

• An edge scorer is a parametric function ξθ(X,A) that returns relational structures Φ, often modeled
as pairwise scores between inputs.

• Edge Scorer’s parameters θ can be trained on the considered downstream task.

An edge scorer should:

• align, whereas possible, with physical model: Are scores input-dependent? Should complex
relationships be considered?

• be designed having in mind constraints set by the problem. How many nodes are present? How much
data is available?

Edge Scorer’s parameters can often be initialized using extracted adjacency matrices.

17

Edge Scorer

Lookup table

Assume a fixed and input-independent graph structure −→ ξθ(X,A) = ξθ .

N×N table
The function ξθ is a table of parameters:

ξθ = Φ ∈ RN×N

=

=

=

=

=

=

Initial data

GNN

Post
Processing

Loss

Backpropagation

A

Scores 𝚽

initial A

input X

Input A
∼

Edge Scorer

Pre Processing /
Initialization

Scores 𝚽

0.5

0.9

0.9

0.5

0.9

0.90.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1

0.1

1

1

1

1

1

Scores 𝚽

= •

Zs

ZT
t

⌣ Finer control

Embedding factorization
Parameters contained in node embeddings:

ξθ = Φ = ZsZ
T
t with Z. ∈ RN×d

=

=

=

=

=

=

Initial data

GNN

Post
Processing

Loss

Backpropagation

A

Scores 𝚽

initial A

input X

Input A
∼

Edge Scorer

Pre Processing /
Initialization

Scores 𝚽

= •

Zs

ZT
t

0.5

0.9

0.9

0.5

0.9

0.90.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1

0.1

1

1

1

1

1

⌣ More parameter efficient

18

Edge Scorer

Lookup table
N×N table

=

=

=

=

=

=

Initial data

GNN

Post
Processing

Loss

Backpropagation

A

Scores 𝚽

initial A

input X

Input A
∼

Edge Scorer

Pre Processing /
Initialization

Scores 𝚽

0.5

0.9

0.9

0.5

0.9

0.90.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1

0.1

1

1

1

1

1

Scores 𝚽

= •

Zs

ZT
t

Embedding factorization

=

=

=

=

=

=

Initial data

GNN

Post
Processing

Loss

Backpropagation

A

Scores 𝚽

initial A

input X

Input A
∼

Edge Scorer

Pre Processing /
Initialization

Scores 𝚽

= •

Zs

ZT
t

0.5

0.9

0.9

0.5

0.9

0.90.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1

0.1

1

1

1

1

1

⌣ Common choice in the literature [11]–[14]
⌣ Easy to implement and learn
⌢ May oversimplify the problem

[11] Franceschi et al., “Learning discrete structures for graph neural networks” 2019.
[12] Wu et al., “Graph wavenet for deep spatial-temporal graph modeling” 2019.
[13] Cini et al., “Sparse Graph Learning from Spatiotemporal Time Series” 2023.
[14] Manenti et al., “Learning Latent Graph Structures and their Uncertainty” 2024.

19

Edge Scorer

Input dependent

The Edge Scorer ξθ(X,A) is a function, enabling different inductive biases [2], [15], [16]:

• Some methods simply use a MLP
• Some others employ a Graph Neural Networks
• Others use simple attention-based architectures

. Iterative score updates and GNN processing blur the distinction between the Edge Scorer and GNN. In
those scenarios, a clear decomposition may not be possible.

As a general rule: keep things simple!

[2] Fatemi et al., “Ugsl: A unified framework for benchmarking graph structure learning” 2023.
[15] Wang et al., “Dynamic graph cnn for learning on point clouds” 2019.
[16] Kazi et al., “Differentiable graph module (dgm) for graph convolutional networks” 2022.

20

Post-processing techniques&
Loss functions

Post-processing techniques & Loss functions

General GSL Framework

=

=

=

=

=

=

input data

GNNPost
Processing

Loss
Function

Backpropagation

A

Scores 𝚽

input A

input X

A
∼

Edge Scorer 𝜁

Pre Processing /
Initialization

Scores 𝚽

0.5

0.9

0.9

0.5

0.9

0.90.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1

0.1

1

1

1

1

1

Scores 𝚽

= •

Zs

ZT
t

Token 1
Token 2

Token 4
Token 3

Token 5
Token 6

Softmax(
Softmax(

Softmax(
Softmax(

Softmax(
Softmax(

T
o
k
e
n
1

T
o
k
e
n
2

T
o
k
e
n
3

T
o
k
e
n
4

T
o
k
e
n
5

T
o
k
e
n
6

)
)

)
)

)
)

dk
√

=

Token 1
Token 2

Token 4
Token 3

Token 5
Token 6

Q

K V

(0)

21

Post-processing techniques & Loss functions

Post-processing techniques

The score matrix Φ is transformed into an adjacency matrix Ã to enforce desired properties.

Common objectives include:

• Training facilitation: row normalization, value clamping, etc.
• Enforcement of structures: symmetrization, minimum spanning tree construction, etc.
• Sparsification: top-k selection, Bernoulli sampling, thresholding, etc.

Specific application requirements often necessitate post-processing techniques.

. Post-processing can introduce unwished consequences.

Let’s focus on sparsification techniques, as it is a desirable property.

22

Post-processing techniques & Loss functions

Sparse matrices

=

=

=

=

=

=

Initial data

GNN

Post
Processing

Loss

Backpropagation

A

Scores 𝚽

initial A

input X

Input A
∼

Edge Scorer

Pre Processing /
Initialization

Scores 𝚽

0.5

0.9

0.9

0.5

0.9

0.90.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1

0.1

1

1

1

1

1

Scores 𝚽

= •

Zs

ZT
t

• A sparse matrix is a matrix in which the majority of elements are zero.
• Sparsity of a matrix = percentage of zero elements.

Q: Why do you think sparse matrices are desirable?

• Most common sparse representation of adjacency matrices in GDL is
the COO (coordinate) format: two tensors, one for non-zero indices
location and the other for corresponding values:
e.g., indices= [[0, 3, 5], [2, 1, 5]] values= [0.9, 0.9, 0.5]

• Other possibilities: CSR, CSC, BSR, BSC, . . . formats

23

Post-processing techniques & Loss functions

Sparse Matrices

Q: What is the computational complexity of a dense GCN layer X ′ = AXW ?

Q: What is the computational complexity of the same GCN layer with sparse matrix multiplications?

Two post-processing techniques that enforce sparsity:

Thresholding
Keep edges if score > threshold

=

=

=

=

=

=

Initial data

GNN

Post
Processing

Loss

Backpropagation

A

Scores 𝚽

initial A

input X

Input A
∼

Edge Scorer

Pre Processing /
Initialization

Scores 𝚽

0.5

0.9

0.9

0.5

0.9

0.90.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1

0.1

1

1

1

1

1

Scores 𝚽

= •

Zs

ZT
t

=

=

=

=

=

=

Initial data

GNN

Post
Processing

Loss

Backpropagation

A

Scores 𝚽

initial A

input X

Input A
∼

Edge Scorer

Pre Processing /
Initialization

Scores 𝚽

0.5

0.9

0.9

0.5

0.9

0.90.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1

0.1

1

1

1

1

1

Scores 𝚽

= •

Zs

ZT
t

Bernoulli sampling
Treat scores as logits to sample from

=

=

=

=

=

=

Initial data

GNN

Post
Processing

Loss

Backpropagation

A

Scores 𝚽

initial A

input X

Input A
∼

Edge Scorer

Pre Processing /
Initialization

Scores 𝚽

0.5

0.9

0.9
0.5

0.9

0.90.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1

0.1

1

1

1

1

1

Scores 𝚽

= •

Zs

ZT
t

24

Post-processing techniques & Loss functions

Thresholding

• Thresholding involves selecting a threshold hyperparameter τ and zeroing entries for which Φij < τ .

=

=

=

=

=

=

Initial data

GNN

Post
Processing

Loss

Backpropagation

A

Scores 𝚽

initial A

input X

Input A
∼

Edge Scorer

Pre Processing /
Initialization

Scores 𝚽

0.5

0.9

0.9

0.5

0.9

0.90.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1

0.1

1

1

1

1

1

Scores 𝚽

= •

Zs

ZT
t

−→

=

=

=

=

=

=

Initial data

GNN

Post
Processing

Loss

Backpropagation

A

Scores 𝚽

initial A

input X

Input A
∼

Edge Scorer

Pre Processing /
Initialization

Scores 𝚽

0.5

0.9

0.9

0.5

0.9

0.90.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1

0.1

1

1

1

1

1

Scores 𝚽

= •

Zs

ZT
t

⌣ Can control sparsity level
⌣ Easy to implement
⌢ Biased gradient

Q: Why is the gradient biased?

• Other sparsification methods, such as top-k or top-p selection, exhibit similar advantages and
disadvantages.

25

Post-processing techniques & Loss functions

Bernoulli sampling

• Sample each edge with probability Φij (or sigmoid(Φij)).

=

=

=

=

=

=

Initial data

GNN

Post
Processing

Loss

Backpropagation

A

Scores 𝚽

initial A

input X

Input A
∼

Edge Scorer

Pre Processing /
Initialization

Scores 𝚽

0.5

0.9

0.9

0.5

0.9

0.90.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1

0.1

1

1

1

1

1

Scores 𝚽

= •

Zs

ZT
t

∼

=

=

=

=

=

=

Initial data

GNN

Post
Processing

Loss

Backpropagation

A

Scores 𝚽

initial A

input X

Input A
∼

Edge Scorer

Pre Processing /
Initialization

Scores 𝚽

0.5

0.9

0.9
0.5

0.9

0.90.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1

0.1

1

1

1

1

1

Scores 𝚽

= •

Zs

ZT
t

• Offers an inherently probabilistic framework.
• Gradient propagation in stochastic operations - e.g. VAEs - is challenging. In VAEs problem was solved

with the reparameterization trick.
• Issues arise as gradients are computed with respect to Φ:

∇ΦEA∼PΦ [L(A,X)]

26

Post-processing techniques & Loss functions

Reparameterization trick

• Direct sampling from a distribution (e.g., Gaussian) introduces a non-differentiable operation,
blocking gradient flow.

• Reparameterization trick solves this problem separating the stochastic nature from the trainable
parameters

1. Express the sampled variable Â as a deterministic function of trainable parameters Φ and a random
variable ϵ.

2. Example (Gaussian): Â = µ(Φ) + σ(Φ)⊙ ϵ, where ϵ ∼ N (0, I).
µ(Φ) represents the mean tensor, parameterized by Φ.
σ(Φ) represents the standard deviation tensor, parameterized by Φ.
⊙ is the element wise multiplication.

⌢ Being Bernoulli random variables discrete, the reparameterization is not applicable.

27

Post-processing techniques & Loss functions

Bernoulli Sampling

• Issue arises as gradients are calculated with respect to Φ, the parameter vector defining the
distribution:

∇ΦEA∼PΦ [L(A,X)]

• Different possible gradient estimators for Bernoulli Random Variables [17]:
1. Straight-Through gradient estimator (treat discrete sample as identity in backward pass) [18]
2. Gumbel-Softmax trick (continuous relaxation of Bernoulli) [19]

⌢ Both methods need dense computation or biased gradient estimation.
3. REINFORCE and/or Score-Function gradient estimator. [20], [21].

[17] Mohamed et al., “Monte carlo gradient estimation in machine learning” 2020.
[18] Bengio et al., “Estimating or propagating gradients through stochastic neurons for conditional computation” 2013.
[19] Jang et al., “Categorical Reparametrization with Gumble-Softmax” 2017.
[20] Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning” 1992.
[21] Sutton et al., “Policy gradient methods for reinforcement learning with function approximation” 1999.

28

Post-processing techniques & Loss functions

Bernoulli Sampling - REINFORCE
The score function gradient estimator directly approximates the gradient of an expectation by leveraging
the log-likelihood trick to enable gradient computation through discrete random variables.

∇ΦEA∼PΦ [L(A,X)] = ∇Φ

∫
L(A,X)PΦ(A)dA

=

∫
L(A,X)∇ΦPΦ(A)dA

=

∫
L(A,X)PΦ(A)∇Φ logPΦ(A)dA

= EA∼PΦ [L(A,X)∇Φ logPΦ(A)]

≈ 1

N

N∑
i=1

L(Ai,X)∇Φ logPΦ(Ai)

⌣ Sparse computations and unbiased gradient estimates.
⌢ High variance (slow or no convergence). It can be mitigated using control variates.

29

Post-processing techniques & Loss functions

Bernoulli Sampling - REINFORCE

• Control variates are used to reduce the variance of the gradient estimate.
• Idea: subtract a function with known expectation from the noisy estimate.

How it works:

1. Let ∇ΦEA∼PΦ [L(A,X)] be the gradient to estimate.
2. Find a control variate c(A,X) with known expectation EA∼PΦ [c(A,X)].
3. Modify the function:

∇ΦEA∼PΦ [L(A,X)] ≈ ∇ΦEA∼PΦ [L(A,X)− β (c(A,X)− EA∼PΦ [c(A,X)])]

. The control variate c(A) should be correlated with L(A,X)∇Φ logPΦ(A).

. The expectation EA∼PΦ [c(A)] must be known or easily computable.

30

Post-processing techniques & Loss functions

Loss functions

Total loss typically composed of two components:

1. (Un/Self-)Supervised Loss: Drives learning towards meaningful graph structures for solving a specific
downstream task.

2. Regularization Loss: Enforces desired properties and constraints on the learned graph.

(Self-)Supervised Loss Regularization Loss

Downstream task (MAE, MSE, Cross-Entropy, ...) Closeness to initial graph structure
Denoising loss Large weights penalization (L1, L2)
Contrastive loss Discourage large / low degree nodes

Enforce symmetry
Enforce or discourage specific graph density

31

Conclusions

Conclusions

Conclusions

• Learning relational structures offers a powerful alternative to rely on pre-defined or potentially flawed
adjacency matrices

• We explored a range of techniques. Each offers different trade-offs in terms of complexity,
expressiveness, and gradient estimation properties.

Some bits of advice:

• Don’t underestimate pre-processing! If possible, initialize your scores.
• While challenging, try to visualize small learned graphs. Do the learned connections make sense in

your domain?
• GSL papers are noisy! Check if the claims made are sustained in practice with rigorous validations.

32

Thank you for your attention!
Questions?

References i

[1] Z. Zhiyao, S. Zhou, B. Mao, et al., “Opengsl: A comprehensive benchmark for graph structure
learning,” Advances in Neural Information Processing Systems, vol. 36, 2024.

[2] B. Fatemi, S. Abu-El-Haija, A. Tsitsulin, et al., “Ugsl: A unified framework for benchmarking graph
structure learning,” arXiv preprint arXiv:2308.10737, 2023.

[3] F. Errica, “On class distributions induced by nearest neighbor graphs for node classification of
tabular data,” Advances in Neural Information Processing Systems, vol. 36, 2024.

[4] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning laplacian matrix in smooth graph
signal representations,” IEEE Transactions on Signal Processing, vol. 64, no. 23, pp. 6160–6173, 2016.

[5] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs from data: A signal
representation perspective,” IEEE Signal Processing Magazine, vol. 36, no. 3, pp. 44–63, 2019.

[6] V. Kalofolias, “How to learn a graph from smooth signals,” in Artificial intelligence and statistics, PMLR,
2016, pp. 920–929.

[7] T. K. Rusch, M. M. Bronstein, and S. Mishra, “A survey on oversmoothing in graph neural
networks,” arXiv preprint arXiv:2303.10993, 2023.

i

References ii
[8] H. Attali, D. Buscaldi, and N. Pernelle, “Rewiring techniques to mitigate oversquashing and

oversmoothing in gnns: A survey,” arXiv preprint arXiv:2411.17429, 2024.
[9] J. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong, and M. M. Bronstein, “Understanding

over-squashing and bottlenecks on graphs via curvature,” arXiv preprint arXiv:2111.14522, 2021.
[10] H. Attali, D. Buscaldi, and N. Pernelle, “Delaunay graph: Addressing over-squashing and

over-smoothing using delaunay triangulation,” in Forty-first International Conference on Machine
Learning, 2024.

[11] L. Franceschi, M. Niepert, M. Pontil, and X. He, “Learning discrete structures for graph neural
networks,” in International conference on machine learning, PMLR, 2019, pp. 1972–1982.

[12] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep spatial-temporal graph
modeling,” in Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019,
pp. 1907–1913.

[13] A. Cini, D. Zambon, and C. Alippi, “Sparse graph learning from spatiotemporal time series,” Journal
of Machine Learning Research, vol. 24, pp. 1–36, 2023.

[14] A. Manenti, D. Zambon, and C. Alippi, “Learning latent graph structures and their uncertainty,”
arXiv preprint arXiv:2405.19933, 2024.

ii

References iii
[15] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph cnn for

learning on point clouds,” ACM Transactions on Graphics (tog), vol. 38, no. 5, pp. 1–12, 2019.
[16] A. Kazi, L. Cosmo, S.-A. Ahmadi, N. Navab, and M. M. Bronstein, “Differentiable graph module (dgm)

for graph convolutional networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45,
no. 2, pp. 1606–1617, 2022.

[17] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih, “Monte carlo gradient estimation in machine
learning,” The Journal of Machine Learning Research, vol. 21, no. 1, pp. 5183–5244, 2020.

[18] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients through stochastic
neurons for conditional computation,” arXiv preprint arXiv:1308.3432, 2013.

[19] E. Jang, S. Gu, and B. Poole, “Categorical reparametrization with gumble-softmax,” in International
Conference on Learning Representations (ICLR 2017), OpenReview. net, 2017.

[20] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement
learning,” Machine learning, vol. 8, pp. 229–256, 1992.

[21] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for reinforcement
learning with function approximation,” Advances in neural information processing systems, vol. 12, 1999.

iii

	Introduction
	Structure initialization techniques
	Edge Scorer
	Post-processing techniques & Loss functions
	Conclusions
	Appendix

